Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors Tobias Riedlinger*, Matthias Rottmann*, Marius Schubert[†] and Hanno Gottschalk* University of Wuppertal, IZMD, School of Mathematics and Natural Sciences, Stochastics* and Applied Computer Science[†] Group #### Abstract We study gradient-based epistemic uncertainty metrics [1] for deep object detectors to obtain reliable confidence estimates. We show that they contain predictive information and that they capture information orthogonal to that of common, output-based uncertainty estimation methods. Moreover, we use meta classifiers as a post-processing filter mechanism to the object detection pipeline and compare object detection performance. Our results show that gradient-based uncertainty is itself on par with output-based methods across different datasets and that combined meta classifiers based on gradient and output-based metrics outperform the standalone models. This suggests that variational inference may be supplemented by gradient-based uncertainty to obtain improved confidence measures, contributing to down-stream applications of deep object detectors by improving their probabilistic reliability. ### Gradient Uncertainty for Object Detection Given an input image $x \in \mathcal{X}$ and model weights w, we regard the box prediction of \hat{N}_x instances $\hat{y}(\boldsymbol{x}, \boldsymbol{w}) = (\hat{y}^1, \dots, \hat{y}^{N_{\boldsymbol{x}}}), \quad \hat{y}^j = (\hat{\xi}^j, \hat{s}^j, \hat{p}^j) \in \mathbb{R}^{4+1+C}, \quad (1)$ consisting of a bounding box $\hat{\xi}^j \in \mathbb{R}^4$, an objectness score $\hat{s}^j \in (0, 1)$ and a vector of class probabilities $\hat{p}^j \in (0, 1)^C$. We compute the candidate-restricted self-learning gradient $g^{\mathrm{cand}}(\boldsymbol{x}, \boldsymbol{w}, \hat{y}^j) := \partial_{\boldsymbol{w}} \mathcal{L}\left(\mathrm{cand}[\hat{y}^j](\boldsymbol{x}, \boldsymbol{w}), \overline{y}^j\right)$ (2) of \hat{y}^j and generate scalars by measuring the magnitude of (2). The resulting uncertainty metrics are used as metrics $\boldsymbol{\varphi}$ for meta classification and meta regression. Theorem (Computational Complexity). The number of FLOP required to compute the last layer (t = T) gradient is $\mathcal{O}(k_T hw + k_T k_{T-1} (2s_T + 1)^4)$. Similarly, for earlier layers t, we have $\mathcal{O}(k_{t+1}k_t + k_t k_{t-1})$, provided that we have previously computed the gradient for the consecutive layer t + 1. Performing variational inference only on the last layer requires $\mathcal{O}(k_T k_{T-1} hw)$ FLOP per sample. #### References [1] Tobias Riedlinger, Matthias Rottmann, Marius Schubert and Hanno Gottschalk Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors. preprint arXiv:2107.04517 (2021) ## Gradient-based Confidence Assignment # Meta Classification and Meta Regression | YOLOv3 | Pascal VOC | | COCO | | KITTI | | YOLOv3 | Pascal V | |---|------------------|------------------|------------------|-----------------------------|------------------|------------------|--|-------------------| | Meta Classification | AuROC | AP | AuROC | AP | AuROC | AP | Meta Regression (R^2) | | | Score | 90.68 ± 0.06 | 69.56 ± 0.12 | 82.97 ± 0.04 | 62.31 ± 0.05 | 96.53 ± 0.05 | 96.87 ± 0.03 | Score | 48.29 ± 0 | | Entropy | 91.30 ± 0.02 | 61.94 ± 0.06 | 76.52 ± 0.02 | 42.52 ± 0.04 | 94.79 ± 0.06 | 94.83 ± 0.05 | Entropy | 43.24 ± 0 | | Energy Score | 92.59 ± 0.02 | 64.65 ± 0.06 | 75.39 ± 0.02 | 39.72 ± 0.06 | 95.66 ± 0.02 | 95.33 ± 0.03 | Energy Score | 47.18 ± 0 | | Full Softmax | 93.81 ± 0.06 | 72.08 ± 0.15 | 82.91 ± 0.06 | 58.65 ± 0.10 | 97.07 ± 0.03 | 96.85 ± 0.03 | Full Softmax | 53.86 ± 0 | | MC Dropout (MC) | 96.72 ± 0.02 | 78.15 ± 0.09 | 89.04 ± 0.02 | 64.94 ± 0.11 | 97.60 ± 0.07 | 97.17 ± 0.10 | MC | 61.63 ± 0 | | Ensemble (E) | 96.87 ± 0.02 | 77.86 ± 0.11 | 88.97 ± 0.02 | 64.05 ± 0.12 | 97.63 ± 0.04 | 97.63 ± 0.05 | ${ m E}$ | 61.48 ± 0 | | MetaDetect (MD) | 95.78 ± 0.05 | 78.64 ± 0.08 | 87.16 ± 0.04 | 69.41 ± 0.07 | 98.23 ± 0.02 | 98.06 ± 0.02 | MD | 60.36 ± 0 | | Grad. Score _{$\ \cdot\ _2$} (GS _{$\ \cdot\ _2$} ; ours) | 94.76 ± 0.03 | 74.86 ± 0.10 | 86.05 ± 0.04 | $\overline{64.25 \pm 0.06}$ | 97.31 ± 0.05 | 96.86 ± 0.10 | $GS_{\ \cdot\ _2}$ (ours) | 58.05 ± 0 | | Grad. Score _{full} (GS_{full} ; ours) | 95.80 ± 0.04 | 78.57 ± 0.11 | 88.07 ± 0.03 | 69.62 ± 0.07 | 98.04 ± 0.03 | 97.81 ± 0.06 | GS_{full} (ours) | $oxed{62.50\pm0}$ | | MC+E+MD (ours) | 97.66 ± 0.02 | 85.13 ± 0.12 | 91.14 ± 0.02 | 73.82 ± 0.05 | 98.56 ± 0.03 | 98.45 ± 0.03 | $\mathrm{MC}{+}\mathrm{E}{+}\mathrm{MD}$ | 69.38 ± 0 | | $GS_{full}+MC+E+MD$ (ours) | 97.95 ± 0.02 | 86.69 ± 0.09 | 91.65 ± 0.03 | 74.88 ± 0.07 | 98.74 ± 0.02 | 98.62 ± 0.01 | $\mathrm{GS}_{\mathrm{full}} + \mathrm{MC} + \mathrm{E} + \mathrm{MD}$ | $oxed{72.26\pm0}$ | # Meta Classifier Calibration $\underbrace{^{ECE=0.040}_{ACE=0.114}}_{0.50} \underbrace{^{ECE=0.040}_{ACE=0.114}\pm 0.002}_{0.50} \underbrace{^{ECE=0.005\pm0.000}_{ACE=0.010\pm0.002}}_{0.002} \underbrace{^{ECE=0.005\pm0.000}_{ACE=0.020\pm0.003}}_{0.50}$ Decision Threshold #### Decision Rule Tradeoff Meta classifiers restricted to the "Pedestrian" class in KITTI: --- $GS_{full}+MC+E+MD$ Compared with the Score baseline, we find a reduction of upwards of 100 FPs at 100 FNs when basing the decisions exclusively on gradient uncertainty. The combined model achieves a reduction of 250 FPs. KITTI COCO 32.60 ± 0.02 78.86 ± 0.05 17.94 ± 0.02 71.53 ± 0.10 36.95 ± 0.13 78.92 ± 0.11 43.85 ± 0.09 82.10 ± 0.11 43.53 ± 0.13 84.18 ± 0.12 44.22 ± 0.11 85.88 ± 0.10 $0.13 38.77 \pm 0.04 81.21 \pm 0.05$ $\mathbf{0.11} \quad \mathbf{44.90} \pm \mathbf{0.09} \quad 85.40 \pm 0.11$ $0.11 54.07 \pm 0.08 87.78 \pm 0.11$ $60.08 \quad 56.14 \pm 0.11 \quad 88.80 \pm 0.07$