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Abstract—In the modern world, energy efficiency is crucial,
that is the motivation why optimization of energy use is so im-
portant. Event-based signaling and processing promises increased
energy efficiency (human brain as paragon). Spiking Neural
Networks (SNNs) are artificial neural networks that more closely
mimic natural neural networks. Their use has shown interesting
results in the field of energy efficiency. In this work, we explore
an SNN approach for object recognition based on larger event
frames from N-MNIST. We get a final accuracy of 99% on the
object detection task and an accuracy of 85% on the classification
task.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are computing systems
inspired by the biological neural networks that constitute
animal brains. Over the years they have been heavily studied
but what is important for our use is their evolution, so called
Spiking Neural Networks (SNNs) [3]. SNNs are artificial neu-
ral networks that more closely mimic natural neural networks.
In addition to neuronal and synaptic state, SNNs incorporate
the concept of time into their operating model. In this project,
we use them combined with N-MNIST dataset [4], a version
of the classic MNIST obtained via neuromorphic camera [1].
We do this because biological neural systems can well perform
tasks with small energy consumption. At the end of our work,
we present an SNN architecture - inspired by YOLO [6] -
able to detect and classify digits in larger event-based frames.
Norse [5] has been as simulator for SNNs.

II. DATASET

We extend the N-MNIST dataset putting the digits in a
larger frame. A lazy approach has been chosen to do that.
This means that meta-data of the neumorphic sequence is
generated when the dataset is created, but the real sequence is
rendered only when it’s needed. We set a shape of 128× 128
as default size, where the original shape was 34 × 34. The
original N-MNIST data is not resized, it’s only padded.
However, it’s even possible to reshape randomly the original
sequence of frames, new shape will range in [34; max].

III. NETWORK

We tried to maintain the structure of the network as sim-
ple as possible. Our network architecture is inspired from
YOLO, that is where the idea of the sub-networks came from.
However, looking at it in detail, we can see a shared part
between classification and detection. This common stream
is simply composed of two convolutional layers. The first
convolutional layer is composed of 30 filters of shape 5 × 5.
The second one is composed of 70 filters of shape 5 × 5.
Result of each convolution is max pooled (shape 3 × 3) and
LIFCell is applied. So far we have a flatten layer and the
network is splitted in two streams: one for classification and
one for detection. These two parts differ in shape but not in
structure. In both we have a first linear layer followed by a
LIFRecurrentCell and as output we have a linear layer
where LICell is applied. The network is iteratively called
on each input frame and the result is stacked. At the end, max
voltage is taken for each class. In Fig. 1 network structure is
shown.

IV. LOSS FUNCTION

Our network is working on two different tasks at same time,
then we decided to use an additive loss function. The resulting

Fig. 1. A network overview. There’s a common stream, and after it, the
network splits in two sub-streams: one for classification task and the other
for detection task.
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Fig. 2. Results on test and training set. The network has been trained for
20 epochs. The red line is the bounding-box prediction accuracy with a
threshold = 0.5.

loss function, used for training and evaluation, is:

ℓtotal = L1(θ1) + L2(θ2)

where L1 denotes the Mean Squared Error and is applied to
the detection stream and L2 denotes the label smoothing loss
and is applied to the classification stream. Adam has been used
as an optimizer.

V. RESULTS

The network has been trained over 20 epochs with a
batch size of 256. It is able to reach a score up to 99% in
detection task and it is stable during the training. Furthermore,
the results over classification are satisfactory. We obtained an
accuracy of 85% in classification task and 99% on detection
task. It is even interesting watching the 3-top accuracy score:
correct result stands on the top 3 predicted values 95% of the
time. This means even under uncertainty conditions network
is well generalized. It is worth of attention how it seems that
loss value is more related to accuracy than to precision. This
can be caused by the fact that when precision start to be high,
classification stream training start to be dominant. In Fig. 2,
results are shown.
We went further to the basic implementation modifying the
input: the original digit has been reshaped from the shape
of 34 × 34 to a squared shape in range [34 − 58]. So far,
we observed that the results are almost comparable with the
original version. The best result we get is around 82% on clas-
sification, but contrary to not reshaped data - on classification
task - network tends to overfit. Another alternative version of
our network has been tested, this time we add noise at the
end of the classification stream. We basically sum a value
sampled from a normal distribution N (0, 1) to each output’s

Precision Accuracy Top-3 accuracy

Original 99,78% 84,91% 96,45%
Resized input 99,78% 82,32% 95,30%
Random noise 99,78% 85,24% 96,245%

[2] - 98.74% -

Fig. 3. Experimental results. We report in this table the results over the
various experiments. Furthermore, we add the SNNs state-of-art in N-MNIST
classification.
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Fig. 4. Classification results based on batch_size. We can see how batch
size is influencing the training. Bigger batch sizes are the ones with best
accuracy values.

value. We did that to improve the quality of our results. At the
beginning of the training the noise is visible, the training is
definitely slower. However, after some epochs, we converge to
same results as original network. We can’t see a real upgrade
to the network, even though, contrary to what we see at epoch
11 in Fig. 2 there is no accuracy drop during the training. In
Fig. 3 we summarize obtained results. In conclusion, we tried
to understand which hyperparameters are more important for
our network. The parameter α in label_smoothing has
shown a good impact on the performance of the classifier.
Setting α = 0 can cause a drop of accuracy around a 1-
2%. However, what is really impacting is batch_size. As
we can see in Fig. 4 at the increasing of batch size value
correspond an increasing of the classification task accuracy.

VI. CONCLUSION

We showed how Spiking Neural Networks can be used
for object recognition task. We provided an architecture that
is able to predict a bounding-box containing a digit from
N-MNIST, a spike-version of classical MNIST dataset. We
present an approach that is able to reach an accuracy of
85% on classification task and 99% on detection task. We
investigated even the possibilty of modifying the network
adding some noise and applying it to different formatted input.
Our results can be considered as a good starting point for
future implementations of Spiking Neural Networks in object
recognition field.
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