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Turbulent flows are characterized by unsteadiness,
chaotic-like flow states and high degree of non-linearity.
The structures involved exhibit a wide range of spatial
and temporal scales. In order to capture all scales of
fluid motion directly, very fine computational meshes
and time steps are required, which makes the computa-
tional effort in the case of engineering-relevant problems
impossible to accomplish in reasonable time despite the
rapidly increasing computer performance. To circumvent
this problem, closures are used, which allow to model
the structures that cannot be captured by the coarser
numerical meshes. However, this advantage in computa-
tion time is paid for with a modeling error, which can be
considerable depending on the chosen approach and the
underlying flow case.

Recent developments in the field of machine learning
(ML), which are largely driven by increased computa-
tional power as well as the availability of exceptionally
large data sets, make it possible to address this issue.

We present a mathematically well founded approach
for the synthetic modeling of turbulent flows using gener-
ative adversarial networks (GAN). Based on the analysis
of chaotic, deterministic systems in terms of ergodicity,
we outline a mathematical proof that GAN can actually
learn to sample state snapshots from the invariant mea-
sure of the chaotic system. Based on this analysis, we
study a hierarchy of chaotic systems starting with the
Lorenz attractor and then carry on to the modeling of
turbulent flows with GAN. As training data, we use fields
of velocity fluctuations in two different settings obtained
from large eddy simulations (LES) (see figure [1)).

GAN consist basically of two mappings - a generator
¢ : A — Q and a discriminator D : Q — [0,1]. Here A
is a space of latent variables endowed with a probability
measure A that is easy to simulate, e.g. Gaussian noise.
The generator ¢ transforms the noise measure A to the
image measure ¢,A. The goal of adversarial learning is,
to learn a mapping ¢ from the feedback of the discrimi-

Figure 1: Example snapshots for both investigated settings ex-
tracted from the LES. Left: Flow around a cylinder (5,000 im-
ages), right: LPT stator (2,250 images).

nator D, such that D is not able to distinguish synthetic
samples from ¢, A from real samples from the target mea-
sure p. However, the discriminator D is a classifier that
is trained to assign real data a high probability of being
real and synthetic data a low probability. If ¢ has been so
well trained, that even the best discriminator D can not
distinguish between samples from p and ¢, A, generative
learning is successful, see also figure [2] In practice, both
the generator ¢ and the discriminator D are realized by
neural networks. The training of GAN is organized as
a two-player minimax game between D and ¢. Mathe-
matically, it is described by the min-max optimization
problem

ngnmgxﬁ(D,qb)

with the loss function

L(D,¢) = Eg~pllog(D(z))] + Ez~allog(l — D(¢(2)))] -

Here, the expected value is denoted by E, the random
variable & with values in 2 follows the distribution u of
the real world data and the latent random variable z with
values in A follows the distribution of the noise measure
A

In our work two architectures are investigated in de-
tail. We use a deep convolutional GAN (DCGAN) to
synthesize the turbulent flow around a cylinder. By con-
ditioning a GAN framework with additional information
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Figure 2: Architecture of the original GAN.

it is possible to take the control over the data production
process performed by the generator ¢. The pix2pixHD
is an extended version of such a conditional GAN frame-
work which allows us to generate high-resolution photo-
realistic images from semantic segmentation masks. We
simulate the flow around a low pressure turbine (LPT)
stator using the pix2pixHD architecture being condi-
tioned on the position of a rotating wake in front of the
stator (see figure . The settings of adversarial training
and the effects of using these specific GAN architectures
are explained in detail.

Figure 3: An image of the training set (left) and its corresponding
binary segmentation mask (right).

By the investigation of physics-based metrics we show
that the statistical properties of GAN-generated and LES
flow agree excellently as to observe in figure[d]for the flow
around a cylinder. Thus, we are able to produce realis-
tic turbulence by GAN trained from scratch, completely
unsupervised and by only having a noise vector as input
at inference time in the unconditional case. For train-
ing and inference of the conditional GAN, we also ad-
ditionally use binary segmentation masks but these can
be created manually and do not need to be obtained by
simulations.

Others than in previous works, the ultimate goal of our
research efforts is to devise a structural recognition work-
flow for a generalised, case-independent synthetisation of
turbulent structures which can be carried out indepen-
dently from a specific configuration. Moreover, we show
by investigation of conditional GAN that generators of
synthetic turbulent flows can learn to cope with changes
of the geometry of the flow path, e.g. caused by a rota-
tion wake. This remains true even if certain positions of
the wake are not included into the training data.

Lastly, we show that GAN are efficient in simulating
turbulence in technically challenging flow problems on
the basis of a moderate amount of training data. GAN
training and inference time significantly fall short when
compared with classical numerical methods, in particular
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Figure 4: Comparison of the mean pixel values (left) and the sta-
tistical fluctuation of the deviation from mean velocities (right) for
5,000 images of flow around a cylinder along the y-axis over a small
grid of 12 pixels in z-direction immediately after the wake. The
blue and red shaded areas indicate the 95% confidence intervals of
the variance for the respective curves. Both data sets were normal-
ized before evaluation.

LES, while still providing turbulent flows in high resolu-
tion (see table [I]).

So far, we have ignored the physics involved. There-
fore, the next step is to feed the GAN with physical pa-
rameters so that turbulent flows can also be captured by
the GAN in a physically correct manner and hence im-
prove the results regarding the statistical properties even
more. Regarding the numerical experiments we will also
pay attention to exploring and developing further ap-
propriate evaluation methods. Having provided a first
approach to generalization in terms of changes in tur-
bulence space, in future work we will also consider how
generalization can be realized in terms of geometries and
further boundary conditions.

LES GAN-Training GAN-
Inference

Machine 560 CPU cores GPU Quadro RTX 8000 with 48 GB

of Intel Xeon

"Skylake"

Gold 6132

@2.6 GHz
Flow 72 core weeks | 1.5 min/epoch | 0.001
around = 1 day (for | (= 2 days for | sec/image
cylinder 5,000 images) 2,000 epochs) (= 5 sec for
(DCGAN) 5,000 images)
LPT 640 core weeks | 17 min/epoch | 0.01 sec/image
stator = 8 days (for | (= 2 days for | (= 22.5 sec for
(pix2pixHD) | 2,250 images) 200 epochs) 2,250 images)

Table 1: Comparison of computational time.
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