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Due the huge amount of data in bioinformatics applica-
tion, supervised and unsupervised feature selection became
essential tools. These methods are often based on individual
features subsets’ scores, where the crucial question is how
to quantify the importance of single features. Several feature
scores appeared in the literature but they often ignore the
correlations among features selves. Game theory and Shapley
values play an important role in recent machine learning
literature. Shapley values offer a direct way to rank features
based on their importance in supervised contexts; this explains
their success and diffusion in various fields.

In computational biology, reducing the overlap among path-
ways within gene sets gained interest in the recent years;
smaller gene-sets with decreased intersection among pathways
would be computationally more treatable and the understand-
ing of the pathways selves by specialist could take advantages
of this.

GAME THEORY AND SHAPLEY VALUES

Cooperative game theory (CGT) allows to fairly allocate
resources among players. In the recent literature, CGT found
application in computer science community in feature selec-
tion [3], [10] and Shapley values have been adapted for bioin-
formatics applications in order to test genotype/phenotype
association or for gene sets prioritization analysis [11]. One of
the advantages of using cooperative game theory for feature
selection is the flexible and non-demanding definition of the
value function which quantifies the resources to be fairly
allocated among players. Shapley values’ exact computation
on the other hand requires 2N evaluations of the value function
where N is the number of players; this makes its application
unfeasible as soon as the number of players increases. Mi-
croarray games [8] reduce the computational challenges in the
computation of exact Shapley values to polynomial time under
the assumption that it is possible to express the game using
binary relationships.

Fig. 1. Each subset of features fis is considered to compute Shapley values.
Correlated features are color-coded.

APPLICATION TO GENE SETS AND PATHWAYS

We extended microarray games to pathways and gene sets.
Pathways are sets of genes corresponding to functionally re-
lated interacting proteins genes while collections of pathways
based on prior biological knowledge are denoted as gene
sets [7]. The pathways in the gene sets can arbitrarily overlap
and their sizes spread between tens and thousand of genes.
Some recent directions of research try to limit the overlap
among pathways while keeping a high coverage of the genes
included in the gene sets. The proposed methods include
visualization tools of redundancy among pathways, merging
pathways based on similarity and integrating full pathways
sets into a non-redundant single and unified pathway [1], [4],
[12]. However, they all concentrate on modifying the pathways
selves rather than reducing the amount of pathways in the gene
set through a thoughtful selection.

METHODS

We develop a new method based on cooperative game
theory and Shapley Values to assign importance scores to path-
ways in a gene set F . We introduce a set based quantification
of resources, where each player is a pathways whose elements
are the genes and the set of players is the gene set. The aim
is to rank the pathways in F based on the distribution of
the genes in them and the overlapping among the different



pathways. More generally, the obtained rankings allow for a
fair evaluation of the importance of sets.

Shapley values assign to each pathway an importance score
based on the size of the pathway and the distribution among
the others pathways of its genes. The first challenge we have to
address is the appearance of a correlation among the position
in the rank of the pathways and their size. Shapley values
tend to assign higher importance scores to high dimensional
sets while do not consider the possible shared genes within
the pathways. We compute the Shapley values adapting the
microarray games to our scope. The binary relationship in the
context of pathways and genes is the membership of the genes
to the single pathways. As we mentioned, the computation of
Shapley values reduces to polynomial run-time allowing for
acceptable run-times in the context of gene sets.

The overlap among pathways is a major challenge in this
context; we develop a way to address the problem of over-
lapping pathways while not compromising with the coverage
of the genes in the gene set. We integrate in the Shapley
values a measure of overlapping among sets: In particular, we
consider the jaccard index, a well established score to quantify
the overlapping among sets A and B; the Jaccard index [6]
j(A,B) is defined as the ratio among the size of intersection
A ∩ B and the size of the union A ∪ B. Punished Shapley
values with the jaccard score are then used to rank pathways
in the gene sets.

GOALS

Coverage of the gene set: Being F a gene set and
{Pi}i=1,...,N the pathways in F , we denote with G the genes
which are contained in at least one Pi. The coverage of G
cG(S) is the percentage of elements g ∈ G that are included
at least in one set when selecting a limited amount of pathways
S ⊆ P(F).

Decrease overlapping among pathways: Averaging the
Jaccard indices of any couple of sets contained in S, we define
the Jaccard rate jac(S) of a family of pathways S, i.e.,

jac(S) = 1

m(m− 1)

∑
Pi,Pj∈S,Pi 6=P

j(Pi, Pj)

where m = |S| and represents the average Jaccard index
among any two pathways in S. The Jaccard rate of a family
of pathways S is always a non-negative real number between
0 and 1; it can not reach the upper limit 1 but, it is worth
to notice that jac(S) = 0 if and only if any couple of sets
in S do not intersect. In order to minimize the redundancy in
a subset of pathways S, it is necessary to select sets whose
intersection is as small as possible.

Study of the impact to GSEA: Gene Set Enrichment
Analysis (GSEA) refers to a variety of methods trying to assess
the enrichment of genes in different pathways concerning a
phenotype with the aim of identifying biological mechanisms
potentially associated with a phenotype. Corrections for multi-
ple testing [5] are necessary when testing for significance and
potentially lead to a loss of statistical significant pathways [2],
[9]. Another more basic approach to avoid the loss of statistical

power is to reduce the number of tests to perform. Limiting the
number of tested pathways within a gene set w.r.t. to a specific
phenotype could lead to a bias while a potential solution might
be the incorporation of unsupervised approaches to reduce the
dimension of the gene set before even considering a specific
phenotype. If the reduction of the number of tests needed to
be performed is independent of the phenotype and preserves
the maximum amount of information contained in the gene
set, the typically inflated type-I error due to pre-screening is
avoided.

RESULTS

We conducted several experiments and evaluated them with
respect to the three mentioned goals. The pathways selected
using our pathways ranking show good performances w.r.t.
the coverage of the entire gene sets (≈ 80% of the genes are
retained with only the 20% of the pathways). Moreover, the
approach is retaining much lower redundancy as expected; the
integration of jaccard rate in the Shapley values allowed for
a fair ranking with low redundancy. Finally, with respect to
an increase statistical power, we are able to show that when
considering a lower amount of pathways, we do not assist to
a decrease in the number of significant pathways found.
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[10] K. PFANNSCHMIDT, E. HÜLLERMEIER, S. HELD, AND R. NEIGER,
Evaluating Tests in Medical Diagnosis: Combining Machine Learning
with Game-Theoretical Concepts, Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems, 610 (2016), pp. 450–
461.

[11] M. SUN, S. MORETTI, K. PASKOV, N. STOCKHAM, M. VARMA,
B. CHRISMAN, P. WASHINGTON, J.-Y. JUNG, AND D. WALL, Game
theoretic centrality: a novel approach to prioritize disease candidate
genes by combining biological networks with the Shapley value, BMC
Bioinformatics, 21 (2020).

[12] M. P. VAN IERSEL, T. KELDER, A. R. PICO, K. HANSPERS, S. COORT,
B. R. CONKLIN, AND C. EVELO, Presenting and exploring biological
pathways with PathVisio, BMC Bioinformatics, 9 (2008), p. 399.


