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Modeling turbulence is highly technical relevant but challenging in practice. Deep convolutional GAN (DCGAN) consist basically of two convolutional —
Turbulent flow is inherently chaotic and develops ever smaller structures that neural networks (CNN) - a generator ¢ and a discriminator D which are ” ces ==t
exhibit a wide range of spatial and temporal scales. Large eddy simulations playing a two-player minimax game described by the optimization problem 0 i

(LES) can capture large scales of turbulence but the computational costs are . -
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We present a mathematically well founded approach for the synthetic mod- o Wiy

eling of turbulent flows using generative adversarial networks (GAN). As e w 0

training data, we use fields of velocity fluctuations obtained from LES. izl sample o

By investigation of physics-based metrics, we show that GAN-generated and SR zeX = % o B
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LES flow are in excellent agreement not only at the visual level but also
in their statistical properties. Thereby, GAN training and inference time

Discriminator D .
(CNN) Figure 4: Mean pixel values (left) and statistical fluctuation of the deviation from mean

velocities (right) for 5,000 images of the KVS along the y-axis.

significantly fall short when compared with LES. Thus, we demonstrate the oo Generator ¢ Fake
ability of GAN to produce realistic turbulence while achieving a tremendous —— (CNN) SZ‘(“:’;" . _ h

reduction of computational time.

Figure 1: Architecture of DCGAN.

The data production process can be controlled by feeding additional in-
formation to D and ¢. The pix2pixHD is an extended version of such a
conditional DCGAN framework which allows us to generate high-resolution 4

photo-realistic images from semantic segmentation masks. Ty

Figure 5: Pointwise correlation for 225 images of the LPT stator along the z-axis (right)
™\ over a selected area (left).
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Figure 2: Top: Real-world images. Bottom: Synthesized images by the pix2pixHD Figure 3: Top: Real-world images. Bottom: Synthesized images by the DCGAN trained (pix2p1xHib) :gg:) (for 2,250 im zpo(cil?;{)s for 200 .22‘5 e 2y
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