LU-Net: Invertible Neural Networks Based on Matrix Factorization

¹ IZMD, University of Wuppertal

Sarina Penquitt¹, Robin Chan², and Hanno Gottschalk³ ³ Institute of Mathematics, Technical University Berlin ² Machine Learning Group, Bielefeld University

Abstract

LU-Net is a simple and fast architecture for invertible neural networks (INNs) that is based on the factorization of quadratic weight matrices A = LU, where L is a lower triangular matrix with ones on the diagonal and U an upper triangular matrix. Instead of learning a fully occupied matrix A, we learn L and U separately. If combined with an invertible activation function, such a layer can easily be inverted whenever the diagonal entries of U are different from zero. Also, the computation of the determinant of the Jacobian matrix is cheap. Consequently, the LU-Net architecture allows for cheap likelihood computation via the change of variables formula and can be trained according to the maximum likelihood principle.

Training via Maximum Likelihood

Let $x \in \mathbb{R}^{D}$ denote some D-dimensional input and let $M \geq 2$ specify the number of LU layers, where each layer of LU-Net is a map $\mathbb{R}^{\mathsf{D}} \to \mathbb{R}^{\mathsf{D}}$. Hence, $f : \mathbb{R}^{D} \to \mathbb{R}^{D}$ denotes the output of LU-Net. Given a dataset $\mathcal{D} = \{\mathbf{x}^{(n)}\}_{n=1}^{N}$ and the set of model parameters $\theta = \{\mathbf{U}^{(m)}, \mathbf{L}^{(m)}, \mathbf{b}^{(m)}\}_{m=1}^{M}$, our training objective is to maximize the likelihood on \mathcal{D} . By using the change of variables formula, the chain rule of calculus and given the fact that the determinant of a triangular matrix is the product of its diagonal entries, we obtain the following expression for the negative log likelihood as training loss function:

$$-\ln \mathscr{L}(\theta|\mathcal{D}) = \frac{1}{2} \cdot \mathsf{N} \cdot \mathsf{D} \cdot \ln(2\pi) + \frac{1}{2} \sum_{n=1}^{\mathsf{N}} \sum_{d=1}^{\mathsf{D}} \mathsf{f}_{d}(\mathsf{x}^{(n)}|\theta)^{2}$$
$$-\sum_{n=1}^{\mathsf{N}} \sum_{m=1}^{\mathsf{M}} \sum_{d=1}^{\mathsf{D}} \ln \phi'^{(m)} \left((\mathsf{L}^{(m)}\mathsf{U}^{(m)}\mathsf{x}^{(n)})_{d} + \mathsf{b}_{d}^{(m)} \right)$$
$$-\mathsf{N} \cdot \sum_{m=1}^{\mathsf{M}} \sum_{d=1}^{\mathsf{D}} \ln |\mathsf{u}_{d,d}^{(m)}| \longrightarrow \min$$

Acknowledgments. This work is funded by the German Federal Ministry for Economic Affairs and Climate Action, the Ministry of Culture and Science of the German state of North Rhine-Westphalia and supported by the German Federal Ministry of Education and Research.

Contact. ¹penquitt@uni-wuppertal.de, ²rchan@techfak.uni-bielefeld.de, ³gottschalk@math.tu-berlin.de Code. https://github.com/spenquitt/LU-Net-Invertible-Neural-Networks

$$(\theta)^2$$

Ministry of Culture and Science of the State of North Rhine-Westphalia

of Education and Research

GPU memory usage <u>1,127</u> MiB	num epochs training 40	test NLL
1,127 MiB	40	
	<u>40</u>	$\underline{3.2424}$ bits/pixel
3,725 MiB	100	$5.6819 \; \mathrm{bits/pixel}$
optimization step	density per image	sampling per image
<u>1.2</u> ms	$\underline{37.10} \text{ ms}$	45.15 ms
$56.0 \mathrm{\ ms}$	$259.15 \mathrm{\ ms}$	$\underline{1.03} \text{ ms}$
5555 6666 7577 8898 8188 8188 8188 8188 8188 8188 81		
	optimization step 1.2 ms 56.0 ms 5559 6666 7797 88877 888777 7977	3,725 Mill 100 optimization step density per image $1.2 ms$ $37.10 ms$ $56.0 ms$ $259.15 ms$ $56.6 ms$ $259.15 ms$ 5559 66.6 7759 66.6 7778 888 7797 66.6 7778 7760 7778 7760 7778 7760 77776 77760 77776 77760 77776 77760 777760 77760 777760 77760 777760 77760 777760 77760 777760 77760 777760 777600 7777600 77776000 $7777700000000000000000000000000000000$

BERGISCHE JNIVERSITÄ[.] WUPPERTAI