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Abstract
LU-Net is a simple and fast architecture for invertible neural networks
(INNs) that is based on the factorization of quadratic weight matrices
A = LU, where L is a lower triangular matrix with ones on the diagonal
and U an upper triangular matrix. Instead of learning a fully occupied
matrix A, we learn L and U separately. If combined with an invertible
activation function, such a layer can easily be inverted whenever the
diagonal entries of U are different from zero. Also, the computation of the
determinant of the Jacobian matrix is cheap. Consequently, the LU-Net
architecture allows for cheap likelihood computation via the change of
variables formula and can be trained according to the maximum likelihood
principle.

Training via Maximum Likelihood
Let x ∈ RD denote some D-dimensional input and let M ≥ 2 specify the
number of LU layers, where each layer of LU-Net is a map RD → RD.
Hence, f : RD → RD denotes the output of LU-Net. Given a dataset
D = {x(n)}Nn=1 and the set of model parameters θ = {U(m), L(m), b(m)}Mm=1,
our training objective is to maximize the likelihood on D. By using the
change of variables formula, the chain rule of calculus and given the fact
that the determinant of a triangular matrix is the product of its diagonal
entries, we obtain the following expression for the negative log likelihood
as training loss function:
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Illustration of one LU layer
U L b Φ Φ−1 −b L−1 U−1

normalizing sequence:
x 7→ Ux
7→ LUx
7→ LUx+ b
7→ Φ(LUx+ b)
= f(x) =: z

generating sequence:
z 7→ Φ−1(z)
7→ Φ−1(z)− b
7→ L−1(Φ−1(z)− b)
7→ U−1L−1(Φ−1(z)− b)
= f−1(z) = x

Gaussian Mixture

Training data 2 LU layers 3 LU layers

5 LU layers 8 LU layers 12 LU layers

MNIST and Fashion MNIST

LU-Net: Randomly generated samples of MNIST and Fashion MNIST

LU-Net: Samples of MNIST and Fashion MNIST generated by
interpolating in latent space of LU-Net

Comparison with RealNVP
model num weight parameters GPU memory usage num epochs training test NLL

LU-Net 4.92 M 1,127 MiB 40 3.2424 bits/pixel
RealNVP 5.39 M 3,725 MiB 100 5.6819 bits/pixel

model train epoch optimization step density per image sampling per image
LU-Net 7.32 sec 1.2 ms 37.10 ms 45.15 ms

RealNVP 99.88 sec 56.0 ms 259.15 ms 1.03 ms

RealNVP: Randomly generated samples of MNIST and Fashion MNIST


