
LU-Net: InvertibleNeuralNetworksBased onMatrixFactorization
Sarina Penquitt1, Robin Chan2, and Hanno Gottschalk3

1 IZMD, University of Wuppertal 2 Machine Learning Group, Bielefeld University 3 Institute of Mathematics, Technical University Berlin

Acknowledgments. This work is funded by the German Federal Ministry for Economic Affairs and Climate Action, the Ministry of Culture and Science of the German state of North Rhine-Westphalia
and supported by the German Federal Ministry of Education and Research.

Contact. 1penquitt@uni-wuppertal.de, 2rchan@techfak.uni-bielefeld.de, 3gottschalk@math.tu-berlin.de
Code. https://github.com/spenquitt/LU-Net-Invertible-Neural-Networks

Abstract
LU-Net is a simple and fast architecture for invertible neural networks
(INNs) that is based on the factorization of quadratic weight matrices
A = LU, where L is a lower triangular matrix with ones on the diagonal
and U an upper triangular matrix. Instead of learning a fully occupied
matrix A, we learn L and U separately. If combined with an invertible
activation function, such a layer can easily be inverted whenever the
diagonal entries of U are different from zero. Also, the computation of the
determinant of the Jacobian matrix is cheap. Consequently, the LU-Net
architecture allows for cheap likelihood computation via the change of
variables formula and can be trained according to the maximum likelihood
principle.

Training via Maximum Likelihood
Let x ∈ RD denote some D-dimensional input and let M ≥ 2 specify the
number of LU layers, where each layer of LU-Net is a map RD → RD.
Hence, f : RD → RD denotes the output of LU-Net. Given a dataset
D = {x(n)}Nn=1 and the set of model parameters θ = {U(m), L(m), b(m)}Mm=1,
our training objective is to maximize the likelihood on D. By using the
change of variables formula, the chain rule of calculus and given the fact
that the determinant of a triangular matrix is the product of its diagonal
entries, we obtain the following expression for the negative log likelihood
as training loss function:

− lnL (θ|D) =
1

2
· N · D · ln(2π) + 1

2

N∑
n=1

D∑
d=1

fd(x
(n)|θ)2

−
N∑

n=1

M∑
m=1

D∑
d=1

lnϕ′(m)
(
(L(m)U(m)x(n))d + b

(m)
d

)
−N ·

M∑
m=1

D∑
d=1

ln
∣∣u(m)

d,d

∣∣ −→ min

Illustration of one LU layer
U L b Φ Φ−1 −b L−1 U−1

normalizing sequence:
x 7→ Ux
7→ LUx
7→ LUx+ b
7→ Φ(LUx+ b)
= f(x) =: z

generating sequence:
z 7→ Φ−1(z)
7→ Φ−1(z)− b
7→ L−1(Φ−1(z)− b)
7→ U−1L−1(Φ−1(z)− b)
= f−1(z) = x

Gaussian Mixture

Training data 2 LU layers 3 LU layers

5 LU layers 8 LU layers 12 LU layers

MNIST and Fashion MNIST

LU-Net: Randomly generated samples of MNIST and Fashion MNIST

LU-Net: Samples of MNIST and Fashion MNIST generated by
interpolating in latent space of LU-Net

Comparison with RealNVP
model num weight parameters GPU memory usage num epochs training test NLL

LU-Net 4.92 M 1,127 MiB 40 3.2424 bits/pixel
RealNVP 5.39 M 3,725 MiB 100 5.6819 bits/pixel

model train epoch optimization step density per image sampling per image
LU-Net 7.32 sec 1.2 ms 37.10 ms 45.15 ms

RealNVP 99.88 sec 56.0 ms 259.15 ms 1.03 ms

RealNVP: Randomly generated samples of MNIST and Fashion MNIST


