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Motivation

Results

Decision Trees as Lightweight Models

The use of neural networks to solve challenges posed by various reinforcement learning environments comes
at the cost of complex, opaque models. In our previous work [1], we investigated the possibility of inducing
simple decision trees (DT) of low depth matching the deep reinforcement learning (DRL) performance while
requiring orders of magnitude fewer parameters. Our previous approach based on collecting samples during
DRL agent's evaluation episodes and subsequently inducing DTs has proven successful on some environments
but faced difficulties on others. We extended our investigations to overcome encountered challenges and
compare three different techniques of generating training data for DTs.

Approach

The three investigated methods of producing a training set for DT induction are:

1. Episodes: The purely episode-based approach consists of logging the observables and the corresponding
actions during evaluation episodes of the DRL agent (“oracle”)

Bounding Box: Based on the statistics of visited points in the observation space during successful oracle
episodes, a given number of samples are taken from the uniform distribution within a hyper-rectangle of
side lengths [L; — 1.5 - 1QR;, U; + 1.5 - IQR,] with L; and U; the lower and upper bound of the visited
points in the 4" dimension of the observation space and IQR; their interquartile range.

Iterative: An initial DT 7' (based on oracle episode samples) is evaluated. The visited points in the
observations space Oy are labeled with the oracle’s decisions Ao and merged with the current training
set. Afterwards a new DT T is induced from the enriched training set and the next iteration begins. A
schematic representation is given in Figure 1.
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Methods

We evaluate all three methods on all OpenAl Gym'’s [2] classic control problems, LunarLander, and CartPole-
SwingUp as implemented in [3]. For the training of oracles we rely on DQN [4], PPO [5], and TD3 [6] in their
implementation of stable-baselines3 [7]. For the induction of DTs we use Classification and Regression Trees
(CART) as described by [8] and implemented in [9] which makes axis-parallel splits in the feature space, and
the Oblique Predictive Clustering Trees (OPCT) as described and implemented in [10]. Since the DTs exhibit
rather strong fluctuations depending on random initialization, we always generate 10 DTs with different seeds
and pick the best-performing one.

experiment the average return R in 100 evaluation episodes is computed. Each experiment is repeated 10
times, and 1 and o are reported.

All algorithms for sample generation are tested on all environments with DTs of depthd =1, ..., 10. For every
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Figure 1. Flowchart of Iterative

Figure 2 shows OPCT performance of different sampling methods as a function of DT depth d. The perfor-
mance of the oracle and the threshold at which an environment is considered “solved” are shown as horizontal
lines. DTs induced from samples obtained by the iterative method show best performance and solve the envi-
ronments at moderate depths d < 7. Often DTs even outperform the oracles, which is remarkable since they
require orders of magnitude fewer parameters (see Table 1). Using the same total number of samples, the
iterative method requires about ten times more computation time than the other two methods.

ACROBOT-V1

ACROBOT-V1 (ZOOMED OUT) CARTPOLE-V1

500
—70 ~100
490
&0 ~200
180

= —90 ~300
300 470

100 {—-p-—r— e —400

- 500

LUNARLANDER-V2 MOUNTAINCAR-VO

100

200
—105
100 110
0 —115
—120
~100
—125
- —13
Y 16 s 10
MOUNTAINCARCONTS 5-v0 PENDULUM-VL Depth d
g5, MOUNTAINCARCONTINUOUS-Y ENDULUM-V
91 ¥‘: ~150 {==mg=m===mt=s e
— Solved
BT —200 ~-=== Oracle
) —— Episodes
=92 -250 —— Bounding Box
—— lterative
01 ‘ 300
90 350 ‘
3 s 10 2 10

1 G 1 6

Depth d Depth d
Figure 2. Return R as a function of DT depth d for all environments and all presented algorithms. The solved-threshold is shown as
dash-dotted green line, the average oracle performance as dashed orange line, and the DTs performances as solid lines with
average and +10 of ten repetitions as shaded area

The number of parameters in DRL models strongly depends on the network architecture (we used default
parameters for our experiments) but is generally in the order of 10! — 10°. DTs on the other hand require far
fewer parameters. The exact number depends on the dimension of the input space D and heavily on depth d

Table 1. Oracle and tree complexity. (D denotes the dimension of the observation space)

Number of parameters

Environment dim D Model  Oracle OPCT depth d

Acrobot-vi 6 DQN 136,710 9 1
CartPole-vi 4 PPO 9155 7 1
CartPole-SwingUp-vi 5 DQN 534,534 890 7
LunarLander-v2 8  PPO 9797 31 2
MountainCar-v0 2 DQN 134,656 5 1
MountainCarContinuous-v0 2 TD3 732406 5 1
Pendulum-v1 3 TD3 734806 156 5
Summary

= All considered environments can be solved by DTs at moderate depths

= The iterative approach is most successful generating a suitable training set

= The iterative approach requires about ten times more computation time compared to the other two
= DTs often even outperform DRL agents

= DTs require orders of magnitude fewer parameters than DRL counterparts

= Our method still requires DRL agents for building the DT surrogate model
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