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I. INTRODUCTION

The demand for interpretability and transparency in rein-
forcement learning (RL) grows with its continued increase
in performance. We found that decision trees (DT) induced
from samples of deep reinforcement learning (DRL) agents are
able to solve control problems with remarkably small depths.
The method’s success is, however, sensitive to the sampling
method used for tree induction. In this short abstract we
briefly describe two previous methods and one new approach
to collect the samples leading to a well-performing DT.

II. METHODS

The main idea of our investigations follows a simple structure:
Starting from an opaque DRL agent (henceforth called “ora-
cle”) trained on a specific environment, samples are collected
by querying the oracle for actions a in given points of the
observation space o. These samples, consisting of features o
and actions a, are fed into a DT algorithm. The induced DT
is then used as agent in the same environment for a number
of evaluation episodes to assess whether the classification or
regression made by the DT based on the training samples
translates well into a high return in the RL environment.

A. Episodes

In a previous publication [1] we described how we induced
DTs from samples collected during (100) evaluation episodes
of the oracle. This lead to remarkably shallow DTs solving
a variety of control problems. This approach, however, has
downsides: (i) The trajectories in episodes of well-performing
oracles generally lie in a narrow corridor. Therefore, the
collected samples do not sufficiently cover regions of the
observation space, so the DT cannot generalize well. (ii) The
nature of some environments leads to an oversampling in
certain regions. This in turn incentivizes the DTs to accurately
represent those regions which are not necessarily relevant to
solve the problem. The inverted pendulum is a simple example
for this; a good oracle swings the pendulum up quickly
where it stands still in the unstable equilibrium, continuously
generating very similar samples in the same region of the
observation space until the time limit is reached.

Fig. 1. Decision surfaces for MountainCar of the DQN model (left) and the
DT created with the Iterative Exploration method (right)

B. Bounding Box

To overcome these downsides and achieve a more uni-
form coverage of the observation space, another method
is tested. Points of the observation space visited in a set
number of evaluation episodes of the oracle are logged.
The borders of a hyperrectangle (bounding box) are fixed to
[Li − 1.5ri, Ui + 1.5ri] with Li and Ui being the minimum
and maximum in each dimension i of the observation space
and ri the interquartile range. The oracle is then asked to
predict actions for a set number (3×104) of randomly chosen
points in the bounding box. Subsequently DTs are trained
on this set of observations and actions. While this mitigates
problems related to the previous method, it introduces new
challenges: Randomly chosen points in the observation space
are not guaranteed to be consistent or reachable, given the
dynamics of the RL environment. In addition, samples may
be added to the training set from regions which the oracle
itself has not explored during its training. The training set is
therefore polluted with predictions which are not necessarily
sensible.

C. Iterative Exploration

To generate samples which on the one hand are possible within
the environment’s dynamic and on the other hand offer enough
coverage beyond the trajectories of well-performing oracles, a
third method was investigated.



1) Initially a DT T (0) is trained on 2 × 104 samples
produced during evaluation episodes of the oracle. (The
initial step corresponds to the Episodes approach.)

2) The often quite imperfect T (0) is then evaluated, while
logging the visited points oT (0) of the observation space.

3) Subsequently the oracle is queried for actions a corre-
sponding to states oT (0) visited during T (0)’s evaluation
episodes.

4) From data consisting of (oT 0 |a)-pairs 1×103 randomly
drawn samples are added to the training dataset.

5) The next DT T (1) is trained on this enriched dataset and
we continue with step 2).

This process is repeated for 10 iterations.

D. Experimental Setup

We evaluate our methods using control problems from OpenAI
Gym [2] and CartPole-SwingUp as implemented in [3]. For the
training of oracles we rely on DQN [4], PPO [5], and TD3 [6]
in their implementation of stable-baselines3 [7]. Although we
also tested the widely-used CART [8] (as implemented in [9])
with axis-parallel splits, for the induction of DTs we mostly
rely on oblique predictive clustering trees (OPCT) described
and implemented in [10]. As the OPCTs exhibit quite large
fluctuations with respect to random initialization, wherever we
speak of training an OPCT, we actually train 10 OPCTs and
pick the best-performing one. The experiments are done for
DT-depths from 1 to 10 and repeated 10 times to account for
statistical fluctuations.

III. RESULTS

Our experiments show that all problems could be solved by
DTs of relatively small depths (≤ 7). The Iterative Exploration
method of generating samples solves all environments with
lower (or at worst equal) depth compared to the Bounding
Box or Episodes methods. Remarkably, in almost all cases
(CartPole-SwingUp being the only exception) DTs even sur-
pass the performance of the oracles that contributed the actions
to their training data (Table I). This is especially interesting as
the DTs are not only simpler (linear inequalities) than the DRL
agents, but also need orders of magnitude fewer parameters
(Table II). This challenges the often reported trade-off between
performance and transparency of AI models. Where possible
(low dimensional observation space) visual inspection of the
decision surfaces (Figure 1), in fact, suggests that DRL agents
perform a needlessly complicated partitioning.

IV. CONCLUSION AND OUTLOOK

Our work has shown that for the investigated control problems
simple DTs of small depth can provide models as good as and
even better than DRL models while being fully transparent
and requiring only a fraction of parameters. The success of
DT induction relies heavily on the training samples. We have
shown that the capability of Iterative Exploration to generate
samples from the relevant regions of the observation space
in the right amount is superior to the other two investigated

TABLE I
NUMBERS SHOW THE LOWEST DEPTHS AT WHICH THE OPCT OBTAINED

BY THE METHOD OF THE RESPECTIVE COLUMN SURPASSES THE
ORACLE’S PERFORMANCE. 10+ MEANS THE MAXIMUM INVESTIGATED

DEPTH IS NOT SUFFICIENT.

Environment DRL Episodes B. Box Iterative

Acrobot-v1 DQN 3 10+ 1
CartPole-v1 PPO 6 1 1
CartPoleSwingUp-v1 DQN 10+ 10+ 10+

LunarLander-v2 PPO 10+ 2 3
MountainCar-v0 DQN 5 6 4
MountainCarCont.-v0 TD3 1 4 1
Pendulum-v1 TD3 10+ 8 6

Sum 44+ 41+ 26+

TABLE II
ORACLE AND TREE COMPLEXITY. n DENOTES THE DIMENSION OF THE

OBSERVATION SPACE, d THE OPCT’S DEPTH.

Number of parameters

Environment n DRL Oracle Iterative d

Acrobot-v1 6 DQN 136,710 9 1
CartPole-v1 4 PPO 9,155 7 1
LunarLander-v2 8 PPO 9,797 71 3
MountainCar-v0 2 DQN 134,662 61 4
MountainCarCont.-v0 2 TD3 732,406 5 1
Pendulum-v1 3 TD3 734,806 316 6

methods. It should be noted, however, that the DRL oracle is
still required to generate successful DTs.
Besides tuning of the parameters of our experiments, an
interesting topic is the induction of DTs based on samples
generated by the oracle during its training. Initial experiments
did not show promising results. This needs to be investigated
further to establish whether those samples generally lead to
less successful DTs and if so, why oracles apparently explore
less fruitful regions during training than the DTs during the
iterative process.
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