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— Intro: Graph Neural Networks

General GNN Framework

« Functions that embed nodes based
on structure and node features

+ Two nodes in a similar structural
context should be mapped to
similar locations in the embedding
space

Message Passing Neural Networks [1, 2]
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— Drawbacks of MPNNs

Feature exchange between nodes 4an

Worse at information bottlenecks

Can prevent learning in
heterophilic settings (pre-
dominantly dissimilar nodes
are connected) [4]

Here we present an approach
to mitigate bottlenecks and
over-smoothing
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d 7requires passing across node 3

Bridging longer distances on the graph leads to problems like over-smoothing [3]
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Dynamic Sampling

2-Layer Graph Convolution

— Dynamic Sampling Graph Neural Network (DSGNN)
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1. Compute Edge Logits
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v 3. Update Walker State
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1. Compute Edge Logits between nodes uand v
po (u,v) = a” (MLP; (u)|[MLP2(v))

2.Sample one Neighbor from Neighbor Set X
Py(X) = softmax, (X + G)

2. Sample one Neighbor
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Stochastic Sampling via
ST Gumbel-Softmax

4. Message-Passing to Origin
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W Sum over Walkers that
originated in node 1
3. Update Walker State with the sampled Node

w:ﬁ'H = sg(wl, x;) = I\ILP¢,(x;) +w!
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pr(X) = argmaxy,, ¢ x (softmax, (X + G))

— Results and Conclusion

Table 1: Results for transductive graph benchmarks. The values are accuracies averaged over all 10 data splits and we include the

standard deviation. The best pe iing model is highlighted in bold and the second best is marked with italic.

Texas Wisconsin Actor Squirrel Chameleon Cornell  Citeseer Pubmed Cora
homophily 0.11 0.20 0.22 0.22 0.24 0.13 0.74 0.80 0.81
# Nodes 183 21 7600 5201 277 183 3327 19717 2708
# Edges 325 515 33301 217073 36101 208 1614 14325 5278
# Classes 5 5 5 5 5 5 G 3 7
DSGNN-DP  86.25:332 81274312 97.62+060 19.501095  68.07 +1.31 74584456  T6.5T+085 88381041 374065
DSGNN-GAT 85424393 83.66+2.50 37434082 47.8T4130 63.7741.31 72194337 76.251086 88321080 £0.87
O(d)-NSD 85.95455 89.414171  37.814115 56.344132 6R.044158 84864171 76.704157  89.49:040 86.90+1.13
GGCN 84.864155 86.86+320 37544156 55174158 T1.144151 85.68+1663 77.1141.45 89.154037  87.95+1.05
H2GCN 81.864723  87.654198 36,8418 60.1142.15 2 s TTA14157 80494035 8T.8T+120
GONII TT.5T+383  80.39+3.40 38474158 63.8643.01 TT86s79  77.39+145 90.154013 88.37+125
Geom-GCN 66.761272  64.5143066 38,1550 60.004251 60.544367  78.024115 89.95 1047 85.354157
GON 55.144516  51.76£306 53434201 64.824221  60.544530 76.50:136 8 127
GAT 52164663 49.414100 10.724155 60264250  61.804505 76.554123 1018
MLP 80.814175  85.2043.31 36.53+070 28.774156 46.214299 81804640 74.02+190 87.164037  75.69+2.00

« DSGNN shows some benefits in performance, although not consistently
« Seems to work best in heterophilic settings

» Two types of edge model (GAT-style [2] and dot product attention) both work
well, seems to depend on dataset

Qualitative Results

» Sampling trajectories on a molecule

Future Work

+ Can we use the trajectories to generate explanations?
+ Can we apply this model to inductive tasks as well?
» Our current state model is very rudimentary and can be improved upon
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