
Graph Learning by Dynamic Sampling
Luca Hermes

Machine Learning Group
Bielefeld University, Germany

lhermes@techfak.uni-bielefeld.de

Aleksei Liuliakov
Machine Learning Group

Bielefeld University, Germany
aliuliakov@techfak.uni-bielefeld.de

Malte Schilling
Autonomous Intelligent Systems Group

University of Münster, Germany
malte.schilling@uni-muenster.de

I. INTRODUCTION

Over the last years, graph convolutional neural networks (GCNs)
[4], [11] have become a standard model to represent graph-
structured data. The basic underlying principle in these models
is to propagate node features along the graph edges which
integrates information over the graph space. Investigations on
the effectiveness of GCNs have shown that node dependencies
over large distances on the graph pose one such challenge.
Integrating information over large distances usually requires to
stack multiple GCN layers, as a single layer usually integrates a 1-
hop neighborhood and every layer added increases this receptive
field by one further hop. Li et al. [5] argues that the neighbor-
hood aggregation method is a form of Laplacian smoothing, it
smoothes out the integrated signal when repeated over multiple
layers. As a consequence, nodes become indistinguishable and the
aggregated information is summarizing large parts of the whole
graph instead. This problem is known as the over-smoothing
problem, which is inherent to the smoothing kernel of GCNs.

A second obstacle is related to structural features of certain
graphs, i.e. heterophily. Such graphs are characterized by the
tendency of connected nodes to belong to different classes. This
property greatly impedes the performance of GCNs. [8] and Yan
et al. [12] relate the effect to the smoothing behavior of GCNs.
To approach these two problems, recent research has turned
toward altering the graph structure to improve the information
conductance or on devising different aggregation techniques
that counteract the degrading performance in more heterophilic
settings.

Here, we propose a method that utilizes a sparse form of
message-passing. Specifically, we investigate a sampling-based
method to focus the aggregation to only a few salient neighbors.
We propose a framework that can be used to learn the message
function and the selection of the sparse message pathways jointly.

This method is build around the concept of walks along a given
graph that we use to directly aggregate features from higher-order
neighbors. In order to find important graph elements, we deploy
a differentiable sampling mechanism that is optimized jointly
with the given downstream objective. As walks follow distinct
paths, the information growth is kept linear instead of growing
exponentially as in dense aggregation methods. We now introduce
all the individual building blocks and finally demonstrate the
effectiveness especially in heterophilic settings using common
transductive graph benchmarks.

II. DYNAMIC SAMPLING GRAPH NEURAL NETWORK

In the following, we formalize our dynamic graph sampling
process and notation convention. We consider input graphs G :=
(V, E , X) that consist of a set of nodes v ∈ V , edges (vi, vj) ∈ E
and node features X ∈ RN×d, where N = |V| and d is the
dimensionality of the node features. We denote the adjacency
matrix as A and Ai,j > 0 if (vi, vj) ∈ E and 0 otherwise.

Conceptually, our approach implements a random-walk, where
walkers traverse G iteratively. Starting from a node vs, these
walkers can visit nodes vj ∈ N T (vs) over T sampling steps,
where N k(vi) denotes the k-hop neighborhood around a node
vi. Usually the sampling procedure of a random-walk is purely
Markovian, as in each step the transition probabilities from a
node vi to a neighbor vj ∈ N (vi) are similarly modeled as
pvi,vj = D(vi)

−1, i.e. the inverse node degree of vi. In contrast,
we deploy stateful walkers wi ∈ W that integrate node features
along the walk. The probabilities to transition from a node vc ∈ V
to one of its neighbors depend not only on vc, but also on the
state of the walker, which represents an additive Markov process.
We ultimately use the walker states to update the nodes Pos0(wi)
where the trajectories of the respective walkers originated. Here,
Post(wi) ∈ V denotes the position of walker wt

i at the sampling
step t.

Fig. 1. Overview of the dynamic sampling GNN framework. Left: An individual walker (dark blue) sampling two steps, updating its own state (solid blue arrows)
and the node features of the origin node (solid black arrows). Right: Steps performed to sample a single step – here from node 1 to node 2: Model ptheta computes
edge logits (1) from which the trajectory is sampled to select a single neighbor (2). The walker traverses to the selected neighbor and updates its own state using sϕ
(3). Finally, the walker updates its origin node (4). If multiple walkers (here red and green)—that originated in the same node 1—meet, their states contribute equally
to the node update (4). Computations are denoted by solid black arrows, yellow boxes denote parameterized functions and dashed lines denote sampling trajectories.

TABLE I
RESULTS FOR TRANSDUCTIVE GRAPH BENCHMARKS. THE VALUES ARE ACCURACIES AVERAGED OVER ALL 10 DATA SPLITS AND WE INCLUDE THE STANDARD

DEVIATION. THE BEST PERFORMING MODEL IS HIGHLIGHTED IN BOLD AND THE SECOND BEST IS MARKED WITH ITALIC.
Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

homophily 0.11 0.20 0.22 0.22 0.24 0.13 0.74 0.80 0.81
Nodes 183 251 7600 5201 2277 183 3327 19717 2708
Edges 325 515 33391 217073 36101 298 4614 44325 5278
Classes 5 5 5 5 5 5 6 3 7

DSGNN-DP 86.25±3.32 84.27±3.12 37 .62±0.60 49.50±0.98 68 .07±1.54 74.58±4.56 76.57±0.85 88.38±0.41 85.87±0.65

DSGNN-GAT 85.42±3.93 83.66±2.50 37.43±0.82 47.87±1.30 63.77±1.31 72.19±3.37 76.25±0.86 88.32±0.80 85.80±0.87

O(d)-NSD 85 .95±5.51 89.41±4.74 37.81±1.15 56.34±1.32 68.04±1.58 84.86±4.71 76.70±1.57 89.49±0.40 86.90±1.13

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55 .17±1.58 71.14±1.84 85.68±6.63 77.11±1.45 89.15±0.37 87 .95±1.05

H2GCN 84.86±7.23 87 .65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28 77.11±1.57 89.49±0.38 87.87±1.20

GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77 .33±1.48 90.15±0.43 88.37±1.25

Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 38.15±0.92 60.00±2.81 60.54±3.67 78.02±1.15 89 .95±0.47 85.35±1.57

GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27

GAT 52.16±6.63 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48

MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40 74.02±1.90 87.16±0.37 75.69±2.00

Following this procedure, nodes accumulate higher order
neighborhood information at every sampling step. Figure 1 (left)
visualizes two such sampling steps as an example for a walker
(dark blue circle) starting at node v1 at sampling step t = 0
and traversing two steps to node v5. After each sampling step, a
message is send to the origin node, i.e. node v1 is updated. As
shown, our model consists of two main components: A sampling
model pθ for neighbor selection, and a state model sϕ to integrate
node features along a trajectory. We consider two different
versions of the sampling model pθ. The first one replicates the
attention mechanism of the graph attention network (GAT) [11]
and the second one implemented dot-product attention. Both
implementations leverage parameterized 2-layer MLPs with a
single non-linearity between the two layers to not limit the
numerical range of the logits. In order to sample just a single
edge from the attention distribution and maintain differentiability,
we apply the Straight-Through Gumbel-Softmax Estimator (ST
Gumbel-Softmax) [3]. To integrate node features along a sampled
trajectory we simply use a simple permutation invariant model.
Specifically, to update the state wt

i of a walker i at sampling step
t, we use a residual block wt+1

i = sϕ(w
t
i ,x

t
j) = MLPϕ(x

t
j)+wt

i .
Lastly, we integrate the walker states wt

i into the representation
of the origin node Pos0(wi) at every sampling step t ∈ [0, T].

Any aggregation function used in GNNs could be used here
and we opt for mean aggregation. After traversing the graph over
T sampling steps, we apply a 2-layer MLP that generates the final
prediction from the node encodings nT ∈ NT . Applying this to
graph-level tasks is possible by aggregating the nodes globally
prior to the final output MLP.

III. RESULTS

We evaluate our approach on common transductive graph bench-
marks [2], [7], [9], [10]. The respective graphs are diverse in
size and exhibit varying homophily rates. The benchmarks are
cross-validated on 10 different splits with 45%, 32%, and 20%
nodes per class for training, testing and validation, respectively.
These are the exact same data splits that have been used by [1],
[8], [12]. For each split an individual model is trained. During
training—after every epoch—models are stored. For evaluation
on the test data the best performing model is restored and used
(for details see [1], [8], [12]).

Table I shows the mean accuracies and standard deviations for
the transductive graph benchmarks. We include multiple baselines
and recent approaches that have been specifically designed for
heterophilic (low homophily value) graph datasets. The models
provided for comparison have been evaluated on the exact same
data splits, i.e. the splits provided by [8]. The accuracy values
are taken from [12], FAGCN and MixHop are taken from [6] and
results of the O(d)-NSD model are taken from [1].

IV. DISCUSSION, REMARKS AND CONCLUSION

We proposed a sampling-based graph neural network that learns
to find salient trajectories along an underlying graph structure
jointly with a given downstream task. We evaluated this approach
on commonly used transductive benchmarks and found that the
sampling is especially useful for heterophilic graphs.

While we introduced the general framework and presented
first promising results, there are open questions for future work:
First, this model can be applied to inductive tasks as well
which has been confirmed by preliminary experiments in the
molecular domain. This is to be investigated further in different
domains as well to showcase a general effectiveness in inductive
tasks. Second, we provided an exemplary implementation of
the components of the general framework here. But there are
many possibilities for variations and different choices which we
want to investigate in the future. As one example, currently
we simply use a permutation invariant state model which offers
multiple routes for improvement. We consider an iterative graph
encoder as a promising replacement. As one further direction,
the selection process of trajectories of the walkers in itself is
an interesting source of information. We are aiming to generate
local explanations on this selection process comparable to [13]
and analysing the sampling behavior globally could yield insight
into properties of graph datasets as a whole.

REFERENCES

[1] C. Bodnar, F. Di Giovanni, B. P. Chamberlain, and et al. Neural Sheaf
Diffusion: A Topological Perspective on Heterophily and Oversmoothing in
GNNs, Oct. 2022. arXiv:2202.04579 [cs, math].

[2] M. Craven, D. DiPasquo, D. Freitag, and et al. Learning to extract symbolic
knowledge from the world wide web. AAAI’98/IAAI’98, page 509–516.

[3] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-
softmax. In ICLR 2017, Conference Track Proceedings, 2017.

[4] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[5] Q. Li, Z. Han, and X. Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. CoRR, abs/1801.07606, 2018.

[6] V. Lingam, R. Ragesh, A. Iyer, and S. Sellamanickam. Simple truncated
SVD based model for node classification on heterophilic graphs. CoRR,
abs/2106.12807, 2021.

[7] G. M. Namata, B. London, L. Getoor, and B. Huang. Query-driven active
surveying for collective classification. In Workshop on Mining and Learning
with Graphs, 2012.

[8] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2020.

[9] P. Sen, G. Namata, M. Bilgic, and et al. Collective classification in network
data articles. AI Magazine, 29:93–106, 09 2008.

[10] J. Tang, J. Sun, C. Wang, and et al. Social influence analysis in large-
scale networks. In Proceedings of the 15th ACM SIGKDD, KDD ’09, page
807–816, New York, NY, USA, 2009.

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio.
Graph attention networks, 2017.

[12] Y. Yan, M. Hashemi, K. Swersky, and et al. Two Sides of the Same Coin:
Heterophily and Oversmoothing in Graph Convolutional Neural Networks.
page arXiv:2102.06462, Feb. 2021.

[13] R. Ying, D. Bourgeois, J. You, and et al. GNN explainer: A tool for post-hoc
explanation of graph neural networks. CoRR, abs/1903.03894, 2019.

	Introduction
	Dynamic Sampling Graph Neural Network
	Results
	Discussion, Remarks and Conclusion
	References

