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Abstract—Hyperband is a state-of-the-art method for
automatically optimizing the hyperparameters of a machine
learning algorithm. However, if the maximal budget used
in Hyperband is chosen too small, the budget needs to be
increased manually post hoc and another run of Hyperband
must be started from scratch, leading to a loss of already
observed information and a lot of wasted budget in the first
run of Hyperband. We propose in this paper an extension of
Hyperband, called Continual Hyperband, that overcomes
the above problem and moreover, comes with a qualitatively
similar theoretical guarantee as for the original version of
Hyperband.

I. INTRODUCTION

The performance, complexity and learning speed of a
machine learning algorithm usually highly depends on
the choice of its hyperparameters. For this reason, it is
important to select suitable hyperparameters for a given
learning task. However, manually searching for these
parameters is a time-consuming or even infeasible task
for the user, which emerged in the research field of au-
tomated hyperparameter optimization (HPO). In general,
HPO methods aim to find an optimal hyperparameter
configuration for a learning algorithm as efficiently as
possible, that generalizes well to new and unseen data
points.

II. HYPERPARAMETER OPTIMIZATION

Given a target algorithm A, hyperparameter optimiza-
tion is the problem of finding a set of optimal hyperpa-
rameters for A. Hyperparameters are all parameters of
A that should be set by a user and usually their values
control the learning process of the target algorithm. Let
X be the space of all valid hyperparameter configurations
for A, then we define a sequence of loss functions ℓk :
X → [0, 1], x 7→ ℓk(x) that represent the validation error
of A trained with hyperparameter configuration x on k
resource units. If we denote ℓ∗ = limk→R ℓk for a fixed
maximal size of iterations R and ν∗ = infx∈X ℓ∗(x), the
goal of an HPO algorithm is to identify a hyperparameter
configuration x∗ ∈ argminx∈X ℓ∗(x)− ν∗.
Even if HPO can be considered as a black-box opti-
mization problem and thus can, in theory, be solved by

various methods, most of them are impractical through
the costly evaluation of a hyperparameter configuration.
In the literature, one distinguished between model-free
and model-based methods. The latter ones work by
learning a surrogate model of the optimization surface
to sample more promising candidates. Typical model-
free methods are grid search and random search, but in
particular the latter is usually too inefficient in the HPO
setting. For a more thorough overview, see Bischl et al.
(2021).

III. HYPERBAND

While usually random search methods are considered
as too inefficient for an HPO problem, Hyperband (Li
et al. (2018)) overcomes this problem by combining
random search with a multi-fidelity candidate evaluation
routine, called Successive Halving (SH, Jamieson and
Talwalkar (2016)). SH iteratively allocates the available
budget B to a set of hyperparameter configurations and
discards the worse half in each step based on their
performance for the current budget. This process is
repeated until only one configuration remains which is
then returned by the algorithm. Hyperband calls SH
multiple times, each time with a different size of the
set of hyperparameter configurations n, but with a fixed
overall budget B. Due to this, it covers different tradeoffs
between considering many different configurations n and
gaining more reliable information about the performance
of the configurations by giving them longer training time
B/n.
For most learning algorithms it is hard to define a
suitable maximal budget R for a single run of a configu-
ration beforehand. To overcome this problem, Jamieson
and Talwalkar (2016) also proposed an infinite horizon
setting, where Hyperband is run repeatedly with an
increasing maximal budget R for each run of a config-
uration. However, each new run of Hyperband is started
from scratch and previously evaluated configurations are
completely discarded. In other words, the budget of the
previous run is wasted and the observed information
about the configurations is lost.



IV. CONTINUAL HYPERBAND (C-HB)

For avoiding this severe loss of information, we
propose an extension of Hyperband, called Continual
Hyperband (Algorithm 1, Brandt et al. (2023)). The
idea is again to iteratively enlarge the maximal budget
R by a factor η. This results in a larger pool size
smax in comparison to the last run of C-HB (see line
4 in Algorithm 1), while the budget per configuration
remains the same in the first iterations of the Continual
Successive Halving (C-SH, Algorithm 2) subroutine.
Thus, we only need to fill the newly available slots in
the pool of configurations (see line 4 in Algorithm 2)
and only need to collect performance information for
them, because we can compare this information with the
already observed information from promoted configura-
tions in the previous run of C-HB. To be as efficient
and resource-saving as possible, we do not revoke any
previous decisions and keep all configurations in the
subsequent iterations of C-SH that were also kept in the
previous run of C-HB. So we only need to fill up the
top-k configurations for the next iteration of C-SH by
the number of available slots in the next iteration minus
the number of already promoted configurations in the
previous run of C-HB (see line 7 in Algorithm 2). All
parts of the algorithms that are different from the original
versions of Hyperband and SH are marked in blue in
Algorithm 1 and 2.

Algorithm 1 Continual-Hyperband (C-HB)
1: Input: max size R, η ≥ 2, old max size

R̃ ∈ {0, R/η}, old configuration samples
((xs,k)k∈{0,...,s})s∈{0,...,logη(R̃)} and losses
((ℓs,k)k∈{0,...,s})s∈{0,...,logη(R̃)}

2: Initialize: smax = ⌊logη(R)⌋, B = (smax + 1)R

3: if R̃ > 0 then
4: s̃max = ⌊logη(R̃)⌋ = smax−1, B̃ = (s̃max+1)R̃
5: end if
6: for s ∈ {smax, smax − 1, . . . , 0} do
7: ns = ⌈BR

ηs

(s+1)⌉, rs = R/ηs

8: if R̃ > 0 and s > 0 then
9: s̃ = s− 1, ñs = ⌈ B̃R̃

ηs̃

(s̃+1)⌉, r̃s = R̃/ηs̃ = rs
10: else
11: ñs = 0
12: end if
13: S ← sample ns − ñs configurations
14: C-SH(S,B, rs, R, η, (xs̃,k)k∈{0,...,s̃}, (ℓs̃,k)k∈{0,...,s̃})
15: end for
16: Output: argmin (ℓs,k)k,s

V. THEORETICAL GUARANTEE

Since an optimal configuration x∗ as defined above
does not always exist, we will focus in the following

Algorithm 2 Continual-SuccessiveHalving (C-SH)
1: Input: S set of arms, budget B, r, max size R, η,

(xk)k old configurations, (ℓk)k old losses
2: Initialize: S0 ← S, ñ = |x0|, n = |S0|+ |x0|
3: for k ∈ {0, 1, . . . , s} do
4: nk = ⌊n/ηk⌋ − ⌊ñ/ηk⌋ , rk = rηk

5: pull each arm in Sk for rk times
6: if k ≤ s− 1 then
7: Sk+1 ← keep best ⌊n/ηk+1⌋−⌊ñ/ηk+1⌋ arms

from Sk ∪ xk\xk+1

8: else
9: Sk+1 ← keep best ⌊n/ηk+1⌋ arms from Sk∪xk

10: end if
11: end for
12: Output: Remaining configuration

on near-optimal configurations. We call x̂ an ϵ-optimal
configuration iff νx̂−νx∗ ≤ ϵ. For a fixed proportion α of
ϵ-optimal configurations in the configuration space, we
can derive the following guarantee, the proof of which
is given in Brandt et al. (2023).

Theorem 5.1: Let η,R, α and δ be fixed such that

R ≥ max
{⌈

log1−α(δ)
⌉
(η − 1) + 1,

η
(
logη(logη(R)) + 4 + ⌊logη(R)⌋/2

− logη
((
⌊logη(R)⌋+ 1

)
!
)
/(⌊logη(R)⌋+ 1)

)
γ̄−1

}
for γ̄−1 := max

s=0,...,⌊logη(R)⌋
max

i=2,...,ns

i
(
1

+ min
{
R, γ−1

(
max

{
ϵ/4, (νi − ν1)/2

})})
.

Then C-HB finds an ϵ-optimal configuration with prob-
ability at least 1− δ.
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