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Abstract

Many safety-critical applications require the computation of preimages of neural networks for a given
output. We present INVPROP, an algorithm to compute a convex overapproximation of these preim-
ages that does not rely on the use of LP solvers and can be executed using GPUs. The experimental
evaluation demonstrates that some computed overapproximations are over 2500 X tighter and 2.5 X

faster than prior work.

1 Introduction

In safety-critical applications, it is often of inter-
est to determine the set of inputs that pro-
duces a given set of outputs. Examples include
autonomous robots that should reach a target
area ("What location must the robot be in, to
reach the target in m timesteps?”) or out-of-
distribution (OOD) detection (?What inputs will
cause an OOD-alert?”) Since neural networks are
not invertible, computing the required exact input
set may be computationally infeasible. Instead, we
propose a technique to compute a convex hull of
the input set in a highly efficient, GPU-supported
fashion. Importantly, this separates our approach
from state-of-the-art techniques that rely on LP
solvers. We demonstrate significant speed and pre-
cision improvements over the state-of-the-art [1, 2]
using our technique.

2 Problem Statement

For a given network f : X C R®™ — R°%" and
an output set Syue € RO, we need to compute a
convex overapproximation of f=1(Syu) € X. We
assume that the output set can be described by
linear constraints: Hf () +d < 0.

The convex hull of f~1(Syyut) can be described
as (Noepn{® : €' @ > ming,nes, ¢’ @'}, As an
approximation, a finite set of ¢ can be used. Thus,

we need to solve several instances of the problem

min ¢'x (1a)
x

st. xzeX; Hf(x)+d<0 (1b)

3 INVPROP

The constraint Hf () +d < 0 can be moved into
the optimization objective by introducing a dual
variable «y. Inverting the order of min and max,
we get a lower bound:

maxmin ¢ x+~' (Hf () +d)
~ x

st. zeX; >0

The inner minimization is only constrained by
x € X, so a lower bound can be efficiently com-
puted by Auto-LiRPA [3]. The result is a relaxed
expression with additional parameters a € [0, 1]:

max AutoLiRPA(a,~)
¥

st. xelX; >0, 0<a<l1

We note that each instantiation of v > 0 yields
a valid lower bound. Both A and « can then be
optimized using projected gradient ascent using
PyTorch, which iteratively tightens the lower
bound of the original problem (1).
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