
Provably Bounding Neural Network Preimages

Suhas Kotha1*, Christopher Brix2*, Zico Kolter1,4,
Krishnamurthy (Dj) Dvijotham3†, Huan Zhang1†

1Carnegie Mellon University, Pittsburgh PA, 15213, USA.
2RWTH Aachen University, Aachen, 52056, Germany.

3Google Research, Brain Team.
4Bosch Center for AI.

*Corresponding authors. E-mails: suhask@andrew.cmu.edu; brix@cs.rwth-aachen.de;
†These authors contributed equally to this work.

Abstract

Many safety-critical applications require the computation of preimages of neural networks for a given
output. We present INVPROP, an algorithm to compute a convex overapproximation of these preim-
ages that does not rely on the use of LP solvers and can be executed using GPUs. The experimental
evaluation demonstrates that some computed overapproximations are over 2500× tighter and 2.5×
faster than prior work.

1 Introduction

In safety-critical applications, it is often of inter-
est to determine the set of inputs that pro-
duces a given set of outputs. Examples include
autonomous robots that should reach a target
area (”What location must the robot be in, to
reach the target in n timesteps?”) or out-of-
distribution (OOD) detection (”What inputs will
cause an OOD-alert?”) Since neural networks are
not invertible, computing the required exact input
set may be computationally infeasible. Instead, we
propose a technique to compute a convex hull of
the input set in a highly efficient, GPU-supported
fashion. Importantly, this separates our approach
from state-of-the-art techniques that rely on LP
solvers. We demonstrate significant speed and pre-
cision improvements over the state-of-the-art [1, 2]
using our technique.

2 Problem Statement

For a given network f : X ⊆ Rin → Rout and
an output set Sout ⊆ Rout, we need to compute a
convex overapproximation of f−1(Sout) ⊆ X . We
assume that the output set can be described by
linear constraints: Hf (x) + d ≤ 0.

The convex hull of f−1(Sout) can be described
as

⋂
c∈Rin{x : c⊤x ≥ minf(x′)∈Sout

c⊤x′}, As an
approximation, a finite set of c can be used. Thus,

we need to solve several instances of the problem

min
x

c⊤x (1a)

s.t. x ∈ X ; Hf (x) + d ≤ 0 (1b)

3 INVPROP

The constraint Hf (x)+d ≤ 0 can be moved into
the optimization objective by introducing a dual
variable γ. Inverting the order of min and max,
we get a lower bound:

max
γ

min
x

c⊤x+ γ⊤ (Hf (x) + d)

s.t. x ∈ X ; γ ≥ 0

The inner minimization is only constrained by
x ∈ X , so a lower bound can be efficiently com-
puted by Auto-LiRPA [3]. The result is a relaxed
expression with additional parameters α ∈ [0, 1]:

max
γ

AutoLiRPA(α,γ)

s.t. x ∈ X ; γ ≥ 0; 0 ≤ α ≤ 1

We note that each instantiation of γ ≥ 0 yields
a valid lower bound. Both λ and α can then be
optimized using projected gradient ascent using
PyTorch, which iteratively tightens the lower
bound of the original problem (1).

1



A similar optimization problem can be defined
to compute bounds on the values of neurons in
intermediate neurons. Tighter bounds on those
neurons allow for a more precise relaxation in
Auto-LiRPA, further improving the bounds on
problem (1).

4 Results

4.1 Backward Reachability Analysis
for Neural Feedback Loops

Prior work [1, 2] defines a benchmark where the
objective is to compute states that a robot must
not be in in order to avoid an obstacle. The next
position is determined by a three layer network
with 12, 7, and 2 neurons. Multiple time steps
can be modeled by composing this function. We
leverage the fact that bounds computed for time
step t can be reused for time step t+ 1.

The SOTA method suffers from increasingly
weak bounds for longer time horizons, as is evi-
dent in Figure 1. Their implementation cannot
tighten the bounds of neurons in intermediate
layers with respect to the output set, which is
possible with our method. By tightening those
bounds, we can in turn improve the bounds on the
input layer.

4.2 OOD Detection

For a dense feed-forward network with 200, 200
and 3 neurons, that was trained to predict label
2 for every OOD input, we define the set of
in-domain data as max{y0, y1} > y2, pictured
in green in Figure 2. For our model, this set
is non-convex, leading to a weak approxima-
tion if a convex hull is used. However, using
input space branching, this non-convexity can
be removed: Each quadrant of the input space
allows for a precise convex hull of the target set.
Therefore, non-convexity can easily be handled by
INVPROP.

References

[1] Rober, N., Everett, M., Zhang, S., How, J.P.:
A hybrid partitioning strategy for backward
reachability of neural feedback loops. arXiv
preprint arXiv:2210.07918 (2022)

[2] Rober, N., Katz, S.M., Sidrane, C., Yel, E.,
Everett, M., Kochenderfer, M.J., How, J.P.:

Fig. 1 Black: Obstacle; green: approximated states that
would result in an collision within 10 time steps. Top:
Prior work (ReBreach-LP) has increasingly weak bounds
for larger time horizons (42.86s for time step 10); bottom:
INVPROP is almost perfectly tight even for ten time steps
(17.89s for time step 10).

Fig. 2 Green: Approximated ID-input space (1 million
samples); blue border: Approximation using INVPROP.
Left: One convex hull (weak); right: union of four convex
hulls, one per quadrant (strong)

Backward reachability analysis of neural feed-
back loops: Techniques for linear and nonlin-
ear systems. arXiv preprint arXiv:2209.14076
(2022)

[3] Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang,
K.-W., Huang, M., Kailkhura, B., Lin, X.,
Hsieh, C.-J.: Automatic perturbation analysis
for scalable certified robustness and beyond.
Advances in Neural Information Processing
Systems 33 (2020)

2


	Introduction
	Problem Statement
	INVPROP
	Results
	Backward Reachability Analysis for Neural Feedback Loops
	OOD Detection


