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Abstract

Many safety-critical applications require the computation of preimages of neural networks for a given
output. We present INVPROP, an algorithm to compute a convex overapproximation of these preim-
ages that does not rely on the use of LP solvers and can be executed using GPUs. The experimental
evaluation demonstrates that some computed overapproximations are over 2500× tighter and 2.5×
faster than prior work.

1 Introduction

In safety-critical applications, it is often of inter-
est to determine the set of inputs that pro-
duces a given set of outputs. Examples include
autonomous robots that should reach a target
area (”What location must the robot be in, to
reach the target in n timesteps?”) or out-of-
distribution (OOD) detection (”What inputs will
cause an OOD-alert?”) Since neural networks are
not invertible, computing the required exact input
set may be computationally infeasible. Instead, we
propose a technique to compute a convex hull of
the input set in a highly efficient, GPU-supported
fashion. Importantly, this separates our approach
from state-of-the-art techniques that rely on LP
solvers. We demonstrate significant speed and pre-
cision improvements over the state-of-the-art [1, 2]
using our technique.

2 Problem Statement

For a given network f : X ⊆ Rin → Rout and
an output set Sout ⊆ Rout, we need to compute a
convex overapproximation of f−1(Sout) ⊆ X . We
assume that the output set can be described by
linear constraints: Hf (x) + d ≤ 0.

The convex hull of f−1(Sout) can be described
as

⋂
c∈Rin{x : c⊤x ≥ minf(x′)∈Sout

c⊤x′}, As an
approximation, a finite set of c can be used. Thus,

we need to solve several instances of the problem

min
x

c⊤x (1a)

s.t. x ∈ X ; Hf (x) + d ≤ 0 (1b)

3 INVPROP

The constraint Hf (x)+d ≤ 0 can be moved into
the optimization objective by introducing a dual
variable γ. Inverting the order of min and max,
we get a lower bound:

max
γ

min
x

c⊤x+ γ⊤ (Hf (x) + d)

s.t. x ∈ X ; γ ≥ 0

The inner minimization is only constrained by
x ∈ X , so a lower bound can be efficiently com-
puted by Auto-LiRPA [3]. The result is a relaxed
expression with additional parameters α ∈ [0, 1]:

max
γ

AutoLiRPA(α,γ)

s.t. x ∈ X ; γ ≥ 0; 0 ≤ α ≤ 1

We note that each instantiation of γ ≥ 0 yields
a valid lower bound. Both λ and α can then be
optimized using projected gradient ascent using
PyTorch, which iteratively tightens the lower
bound of the original problem (1).
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