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Motivation: Diesel engine calibration
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Processes Combustion Calibration Diesel Engine

measure engine

measure engine

math model

math model

optimize

optimize

http://www.mercedes-benz.com.au
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Processes Combustion Calibration Diesel Engine

measure enginemeasure engine math model

math model

optimize

optimize

Measure engine
• Measurements at engine test bench
• Measurement costly in time and money
• Plan measurements carefully (design of experiments, adaptive)

http://www.mechatronics.rwth-aachen.de
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Processes Combustion Calibration Diesel Engine

measure engine

measure engine

math modelmath model optimize

optimize

Use measurement data to create a model

engine speed

torque

main injection timing

rail pressure

turbo boost

exhaust gas recirculation

pre-/postinjection timings&quantities

. . .


→



fuel consumption
NOx emissions
particulate emissions
noise
temperatures
pressures
actuators
. . .

Such models are almost universally Gaussian processes:
• A model class with strong inductive biases
• Work well with few data points
• Allow inclusion of expert knowledge (engineers want to tinker)
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Processes Combustion Calibration Diesel Engine

measure engine

measure engine

math model

math model

optimizeoptimize

Optimize
This is another topic. . .
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Table of contents

• What is a GP?
• Why do GPs appear in applications with little data?
• Why do GPs appear in physical applications?

Interpretability of GPs
• Dictionary: inductive bias of GPs↔ math
• Inductive bias can be specified by domain experts
• Inductive bias can depend on parameters, which can be learned
• Well calibrated model uncertainties
• And more

Math asides will be typeset small

Feel free to aks questions anytime!
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Reminder: Gaussian Distributions
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Gaussian Distribution on Rn
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Why is the Gaussian distribution so ubiquitous?
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Gaussian Distribution: Properties

Theorem
The Gaussian distribution maximizes the entropy among all
probability distributions on Rn with fixed mean and (co)variance.

Maximum entropy prior (Jaynes)
Known/suspected mean and (co)variance: take Gaussian prior.
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Gaussian distribution: properties

Corollaries (colloquial)
“Everything” described by the first two moments/cumulants.
• uncorrelated =⇒ independent.
• Central limit theorem

iid random variables with finite mean and variance converge to a Gaussian distribution by averaging.

• Closed under marginal distributions
Trivial to compute: drop the marginalized part
• Closed under conditional distributions

Compute via linear algebra:
µx1|x2=a = µx1 +Σx1,x2Σ

−1
x2,x2

(a− µx2)
Σx1,x1|x2=a = Σx1,x1 − Σx1,x2Σ

−1
x2,x2

Σx2,x1

• Sampling is possible
Compute via linear algebra: diagonalize covariance
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Questions?

Gaussian processes
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Questions?

Gaussian processes
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Regression: Gaussian Processes

Idea
Assume Gaussian function values of the regression function f .
Marginalization: only consider finitely many function evaluations.

x1

f(x1)

x2

f(x2)

x3

f(x3)

x4

f(x4)

density for f(x4)

Definition: Gaussian process
A distribution on functions s.t. the evaluations f(x1), . . . , f(xn) at
any x1, . . . , xn are (jointly) Gaussian.
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Characterizing Gaussian Processes

Gaussian distribution Gaussian process
1D finite dimensional

N (µ, σ2) N (µ,Σ) GP(µ(x), k(x1, x2))
mean mean vector mean function
µ µ µ(x)

variance covariance matrix covariance function
σ2 Σ k(x1, x2)

higher moments/cumulants irrelevant/zero

Set mean function to the constant zero function (normalize data).

It remains to. . .
. . . encode information in the covariance function.

Plot GPs: sample a Gaussian distribution one dimension per pixel.
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Covariance: Interdependence of Function Evaluations

C1: continuously differentiable
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Covariance: Interdependence of Function Evaluations

C2: twice continuously differentiable
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Covariance: Interdependence of Function Evaluations

C∞: smooth
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Neural net priors

Central limit theorem
Neural nets with infinite width converge to Gaussian processes
iid parameters, controlling mean and variance

Step function, depth 1 ReLU, depth 10
Neal, Bayesian learning for neural networks Lee et.al, Deep Neural Networks as Gaussian Processes
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Kernel Cookbook

squared exponential σ2 exp
(
− 1

2
(x−x′)2

ℓ2

)

rational quadratic σ2
(
1 + 1

2α
(x−x′)2

ℓ2

)−α

periodic
σ2 exp

(
−2 sin2(π

p |x−x′|)
ℓ2

)

linear a2 + b2xx′

local periodic σ2 exp

(
−2

sin2(π
p

|x−x′|)

ℓ2
− 1

2
(x−x′)2

ℓ2

)

David Duvenaud, Kernel Cookbook, http://www.cs.toronto.edu/~duvenaud/cookbook/
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Bayesian approach

prior posterior

update on
observations

• Prior: domain knowledge or uninformative
• Condition on data
• Goal: posterior

Good prior: stable and decent models for few data points.
(Due to their simplicity: GPs are the standard functional prior in Bayesian ML&Stats.)
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Gaussian process regression: math

Reminder: Gaussian process g = GP(µ, k)
A distribution on Rd → Rℓ s.t. g(x1), . . . , g(xn) are Gaussian.
Data structure: µ : Rd → Rℓ and k : Rd × Rd → Rℓ×ℓ

≥0 .

Regression model

Assume µ = 0. Condition on {(xi, yi) ∈ R1×(d+ℓ) | i = 1, . . . , n}.

GP
(

x 7→ yk(X,X)−1k(X,x),

(x, x′) 7→ k(x,x′)− k(x,X)k(X,X)−1k(X,x′)
)

.

k(X,X) =

[
k(x1, x1) . . .

...
. . .

]
∈ Rℓn×ℓn

≥0 ,

k(x,X) =
[
k(x, x1) . . .

]
∈ Rℓ×ℓn, and y =

[
y1 . . .

]
∈ R1×ℓn.
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Gaussian process regression: classical algorithm

Inputs: X ∈ Rn×d (inputs), y ∈ Rn×ℓ (outputs), covariance function k

Output: posterior GP

1 L := Cholesky(k(X,X)) (hence, k(X,X) = LTL, precompute, O(n3))

2 α := y/L/LT
(precompute, O(n2))

3 return

GP( x 7→ α · k(X,x),

(x, x′) 7→ k(x, x′)− (k(x,X)/LT ) · (L\k(x′, X)))

(O(n)), O(n2)))

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Include Measurement Data

C∞: smooth

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Include Measurement Data

C∞, conditioned on data

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Gaussian process regression: noise

• Take a maximum entropy prior on the behavior unexplained by g:

Add Gaussian white noise ε (works well enough if noise is not strictly Gaussian).
• Replace covariance k(X,X) by k(X,X) + var(ε)Iℓn.

(more variance, no new correlations)
• Posterior:

GP
(

x 7→ y(k(X,X) + var(ε)Iℓn)
−1k(x,X)T ,

(x, x′) 7→ k(x, x′)− k(x,X)(k(X,X) + var(ε)Iℓn)
−1k(x′, X)T

)
• Noise makes computations numerically stable decreases condition number.
• Possible: set noise individual for data points or data channels.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Include Measurement Data

C∞, conditioned on data

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Include Measurement Data

C∞, conditioned on noisy data
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Gaussian process regression: hyperparameters

• Hyperparameters in the priors:
• length scales ℓ
• signal variance σ
• noise ε
• period p
• etc.

• Optimal hyperparameters: optimize the (log-)likelihood.

log p(y|X) = − 1

2
yTK−1y︸ ︷︷ ︸

data fit

− 1

2
log(det(K))︸ ︷︷ ︸

model complexity

−n

2
log 2π

Computable via linear Algebra (including gradients)
Optimization instead of integration: potential overfitting? Part of GAIA (tandem in Dataninja) to reduce this problem.

• Hyperparameters in GPs are interpretable and learnable
E.g. learn a period in your data.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Automatic relevance determination
Hyperparameters in GPs are interpretable and learnable
E.g. lengthscales learn which inputs are relevant.
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Hyperparameter estimation: multiple explanations of data

Rasmussen/Williams, Gaussian processes for Machine Learning
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Typical GP Workflow

1 Get data

2 Construct a covariance function, including hyperparameters

3 Get best hyperparameters by optimizing the log-likelihood

4 Carefully inspect the predictions and hyperparameter values

5 If inspection is not good, go to step 1 or 2.

6 ???

7 Profit

Default setting:
• squared exponential covariance k(t, t′) = exp

(
1
2(t− t′)2

)
• ARD length scales
• unified noise hyperparameter
• zero mean

Automating this workflow is part of GAIA.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Typical Problems

• Cholesky fails: the covariance matrix is not positive definite
• Matrix not symmetric or eigenvalues≪ 0: no covariance function
• Minor negative eigenvalues: numerical problems

• (Iteratively) add more noise
• Use float64

• Predictions are bad
• Data is bad (duh)
• Data does not fit the prior
• Look at the trained hyperparameters. Are they reasonable?
• Dictionaries below interpret what your model is doing wrong.

• Everything is slow
• Remember O(n3)
• (L-)BFGS>SGD
• Take an approximation to GPs which make SGD applicable

start with the 2009 AISTATS paper from Titsias and continue with the 2013 UAI paper from Hensman et. al.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Message for interpretability

Interpretability of basic GPs
• Construct suitable covariance functions for each application
• Learn interpretable parameters: noise, relevance of inputs,

periods etc. (for physical constants see below)
• One model class can give several interpretations of the data
• Interpretable parameters can be changed or set manually

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Questions?

Use case: GDI timing

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Questions?

Use case: GDI timing
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Calibration of gasoline engines for particulate reduction

http://www.autonews.com/article/20051031/SUB/51102026/

Optimization goal
Find optimal injection strategy
• (rail) pressure
• timing
• amount

for 1-5 injection such that
particulate matter is minimal.

Challenge
• Inject early to allow mixing,

without hitting the piston.
• If piston is hit, sudden

incline of particulate matter.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Particulate matter measurements are not Gaussian

injection timing

pa
rt
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spray hits
piston

particulate
minimum

best
calibration

buckling

Approach

•
• Input transformation
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Particulate matter measurements are not Gaussian

injection timing
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buckling

Diagram depends on
• speed
• load
• air pressure
• intake valve timing
• exhaust valve timing
• rail pressure
• (ignition timing)
• (timings of later injections)
• (quantities in later injections)
• etc.

Approach

•
• Input transformation
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Particulate matter measurements are not Gaussian

injection timing
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Violated default assumptions
• Gaussian distribution of data

• Constant noise
• Smooth behavior
• Covariance function stationary

Approach

•
• Input transformation
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Violated default assumptions
• Gaussian distribution of data
• Constant noise
• Smooth behavior
• Covariance function stationary

Approach
• Output transformation

• Input transformation
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Particulate matter measurements are not Gaussian
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Violated default assumptions
• Gaussian distribution of data
• Constant noise
• Smooth behavior
• Covariance function stationary

Approach
• Output transformation
• Input transformation
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Warped and manifold Gaussian processes

Injection timing
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Warped Gaussian processes
• transformation of the output space
• goal: make data more Gaussian
• goal: make noise more even

Manifold Gaussian processes
• transformation of the input space
• goal: model unsmooth behavior
• goal: allow non-stationary behavior

Warped and manifold Gaussian
processes
• transformation and covariance

parameter chosen jointly

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Warped Gaussian processes
• transformation of the output space
• goal: make data more Gaussian
• goal: make noise more even

Manifold Gaussian processes
• transformation of the input space
• goal: model unsmooth behavior
• goal: allow non-stationary behavior

Warped and manifold Gaussian
processes
• transformation and covariance

parameter chosen jointly
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Effect of warped and manifold Gaussian processes

without
transformations

warped
transformation

manifold
transformation

both
transformations

Thewes, Lange-Hegermann, Reuber, Beck, Erweiterte Modellierungstechniken für Gaussche Prozessmodelle

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Model comparison to validation sweep

polynomial model (degree 3)

Thewes, Lange-Hegermann, Reuber, Beck, Erweiterte Modellierungstechniken für Gaussche Prozessmodelle

model
validation sweep

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Model comparison to validation sweep

Gaussian process model

Thewes, Lange-Hegermann, Reuber, Beck, Erweiterte Modellierungstechniken für Gaussche Prozessmodelle

model
validation sweep

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Model comparison to validation sweep

Gaussian process model with log transformation

Thewes, Lange-Hegermann, Reuber, Beck, Erweiterte Modellierungstechniken für Gaussche Prozessmodelle

model
validation sweep

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Model comparison to validation sweep

manifold warped Gaussian process model

Thewes, Lange-Hegermann, Reuber, Beck, Erweiterte Modellierungstechniken für Gaussche Prozessmodelle

model
validation sweep

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Model comparison to initial drawing

Injection timing

pa
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r
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Message for interpretability

Interpretability of transformations
• Build in specific expert knowledge via transformations
• Automatic learning of (parameters of) transformations

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Questions?

Understanding and Manipulating the Prior
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Questions?

Understanding and Manipulating the Prior

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability



36/84

RKHS

Reproducing Kernel Hilbert Spaces (RKHS)
A Hilbert space of functions s.t. their evaluations are continuous.

• Continuity (or even differentiability) of the model evaluation is typically
required for model training.
• Hence, most ML-models can be described by an RKHS.

This is very obvious for kernel methods (GPs, SVMs, ...).
• RKHS are an important tool in understanding neural networks.

(via neural tangent kernel (NTK) or infinite width limit)

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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RKHS

Let g = GP(0, k).
The x 7→ k(xi, x) for xi ∈ Rd generate the pre-Hilbert space H0(g), which we endow with scalar product〈
k(xi,−), k(xj ,−)

〉
:= k(xi, xj). Its closure w.r.t. ⟨·, ·⟩H(g) is the RKHS of g.

Theorem
Any RKHS is of this form, i.e. has a so-called reproducing kernel k.
In particular, there is a 1-1-correspondence: kernels↔ RKHS.

RKHS encode the covariance functions. They allow to interpret GPs.
H0(g) is the space of posterior mean functions.

In many settings, the RKHS H(g) is the Cameron-Martin Space of the Gaussian measure induced by g.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Support and realizations

No Gaussian measure on H(g) if it is infinite dimensional.

GP g induces a Gaussian measure on a space of functions F ←↩ H(g)
(e.g., abstract Weiner space) under mild assumptions on the topology of F .

The realizations (samples) of g are the support of this measure.
This is the closure H(g) of H(g) in F .

Trivial example
The linear covariance function k(t, t′) = t · t′ induces a GP with
realizations equal to the spaceH(k) = R · (t 7→ t) of linear functions.

Non-trivial example
The squared exponential covariance function

k(t, t′) = exp

(
1

2
(t− t′)2

)
induces a GP with realizations dense (Fréchet topology) in C∞(R,R).

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Theorems

Universal Approximation Theorem
The previous slide shows examples of universal approximation
theorems of GPs.

Let me go back and explain. . .

Representer Theorem
Given data, the posterior GP mean of the prior GP(0, k) is the
function of lowestH(k)-norm interpolating this data.

This is why Frequentists use GPs, Bayesian do not care and say that of course Bayesian update has nice properties.

Similar theorems explain the double descent curve of neural nets.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Idea: Constructing covariance functions

Idea: Constructing covariance functions
• A GP can be interpreted via its RKHS.
• Many constructions for covariance functions are possible.
• Interpret these constructions via their RKHS.
• Knowledge about suitable regression functions yields a kernel.
• We have seen base kernels above.
• Now: build new covariance functions from old ones.
• Later: some interesting kernels.

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability
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Sums

Theorem
Let g1 = (0, k1) and g2 = (0, k2) GPs and g = (0, k1 + k2). Then,

H(g) = H(g1) +H(g2).

(For a suitable choice of the scalar product in the sum, which is usually not direct.)

• Explain an effect as a sum of two causes
• E.g. smooth plus periodic

• Extrapolation when adding 1D-kernels in high dimensions.
• Might weaken the curse of dimensionality
• Might overfit when extrapolating
• Decent for very few data points

• Learnable and interpretable hyperparameters for weighting.
• Special case from above: one summand is the noise.
• In practice: use a summand for “unexplained behavior”.
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Products

Theorem
Let g1 = (0, k1) and g2 = (0, k2) GPs and g = (0, k1 · k2). Then,

H(g) = H(g1)⊗H(g2).

The Hilbert space ⊗ is the completion of the vector space ⊗. The fun begins when tensoring the spaces of realizations.

• All causes are needed for an effect.
• E.g. locally periodic behavior

• Product over input dimensions.
• No hyperparameters necessary.
• Special case: multiplying constant covariance leads to scaling.
• Special case: automatic relevance determination
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Sums and Products

from David Duvenaud’s PhD thesis.
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Sums and Products

from David Duvenaud’s PhD thesis.
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Subspaces

Theorem
Let V be a closed subspace ofH(g) with corresponding orthogonal
projection π : H(g)→ V . Let gV := (0, π1kπ2)). Then,

H(gV ) = π(H(g)) =: π∗H(g).

Example: V closed subspace of symmetric functions with

π : f 7→
(
x 7→ 1

2
(f(x) + f(−x))

)
.

Kernel (can be simplified for stationary covariances):

1

4
(k(t, t′) + k(−t, t′) + k(t,−t′) + k(−t,−t′))

This demonstrates how to use Reynold’s operator to construct covariance functions for invariants under finite Groups.

If you can solve the necessary integral, this also works for Lie groups.

If π is only epic but not orthogonal, then the theorem holds as sets but not as Hilbert spaces.
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Input transformations (Manifold GPs)

Let g = GP(µ, k) defined on Rd and f : Rc → Rd. Then

f∗g := GP(x 7→ µ(f(x)), (x, y′) 7→ k(f(x), f(x′)))

is defined on Rc with

H(f∗g) = f∗H(g).
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Using these constructions to explain data

Automatic finding of explanations
• Train several GPs on a dataset.
• Take the best fitting one.
• Its covariance function interpretes the data.
• Iterative procedures possible.

Used in GAIA to explain anomalies.
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Message for interpretability

Interpretability of RKHS
• Covariance functions and GPs can be interpreted mathematically.
• Various constructions and combinations of covariance functions.
• Communicate such interpretations to laypeople?
• Laypeople teach their knowledge to AIs?
• Automatically choosing a covariance function interprets data.
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Questions?

Using variances of Gaussian processes
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Questions?

Using variances of Gaussian processes
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Variances

• A posterior GP is a GP, which comes with variances.
• This is a way to quantify uncertainty, even to humans.
• Are there enough data points near predictions? (Depends on length scales)

• Compare/calibrate model uncertainties with measurement noise.
• Heterogenous noise: Warping, individual noise levels, . . .
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Bayesian optimization
• Minimize (expensive to evaluate function) f .
• Approximate f by a Gaussian process using few data points.
• Sample f at promising point (high variance, low prediction)
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Example: Bayesian optimization for hyperparameter tuning

joint with Alissa Müller and Alexander von Birgelen.
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Safe Optimization
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Safety bounds
Probability that a GP surpass a safety bound:
• Approximate via MCMC (expensive to compute)
• Upper bound via chaining (guaranteed safety)

joint with Fabian Mies, Jörn Tebbe, and XXX.
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“Online DoE” for drivability calibration
• Optimize torque demand response to the gas pedal in a sports car.
• Controllable Inputs: time constant T1, amplification factor Kd.
• Uncontrollable Inputs: engine speed, pedal position.
• Avoid uncomfortably large or unsporty small jerks (V DV ) and

undynamic response (t80): useless, expensive, uncomfortable.
• Design of experiment (DoE), adaptable online.
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“Online DoE” for drivability calibration
• Optimize torque demand response to the gas pedal in a sports car.
• Controllable Inputs: time constant T1, amplification factor Kd.
• Uncontrollable Inputs: engine speed, pedal position.
• Avoid uncomfortably large or unsporty small jerks (V DV ) and

undynamic response (t80): useless, expensive, uncomfortable.
• Design of experiment (DoE), adaptable online.

Prediction of the border of the valid design space at Kd = 0.1 and T1 = 0.5s
after 46 measurements. Reference boundaries after 300 measurements.

Thewes, Krause, Reuber, Lange-Hegermann, Dziadek, Rebbert, Efficient in-vehicle calibration by the usage of automation and
enhanced online DoE approaches

Markus Lange-Hegermann (inIT, TH OWL) On Gaussian Processes and their Interpretability



54/84

“Online DoE” for drivability calibration
• Optimize torque demand response to the gas pedal in a sports car.
• Controllable Inputs: time constant T1, amplification factor Kd.
• Uncontrollable Inputs: engine speed, pedal position.
• Avoid uncomfortably large or unsporty small jerks (V DV ) and

undynamic response (t80): useless, expensive, uncomfortable.
• Design of experiment (DoE), adaptable online.

conservative setting aggressive setting

Thewes, Krause, Reuber, Lange-Hegermann, Dziadek, Rebbert, Efficient in-vehicle calibration by the usage of automation and
enhanced online DoE approaches
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Message for interpretability

Interpretability of variances
• Variances give model uncertainty
• Variances can be used for optimization
• Variances address safety constraints
• Variances guides where additional data is needed
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Questions?

Gaussian processes and Linear Systems (in the
sense of linear algebra)
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Questions?

Gaussian processes and Linear Systems (in the
sense of linear algebra)
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Linear Systems (in the sense of linear algebra)

For F = C∞(R,R) and A =
[
2 −3

]
consider

solF (A) :=

{[
f1(x)
f2(x)

]
∈ F2×1

∣∣∣∣A · [f1(x)f2(x)

]
= 0

}

Use B =

[
3
2

]
as parametrization:

solF (A) = B · F = {B · f(x) | f(x) ∈ F}

Taking a GP prior g = GP(0, k) for g ∈ F yields a GP prior

B∗g = GP(0, BkBT )

for solF (A).
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Linear Systems (in the sense of linear algebra)
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consider
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B∗g = GP(0, BkBT )

for solF (A).
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Message for interpretability

Interpretability of linear algebra
• GPs play nice with linear algebra
• GPs allow to encode linear dependencies
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Questions?

Gaussian processes and linear ordinary differential
equations
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Questions?

Gaussian processes and linear ordinary differential
equations
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Combination of Gaussian processes with operator equations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Combine strict, global information from differential equations
with noisy, local information from observations.
• Incorporate justified assumptions: use the full information of

the observations for a precise regression model.
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Example

u(t)

x(t)

y(t)

u(t)

x(t)

y(t)

∂tx(t) = −(x(t)− y(t)) + u(t)

∂ty(t) = +(x(t)− y(t))

0 1 2 3

1

x(t)

y(t)

u(t)
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Constructing suitable covariance functions

∂tx(t) = −(x(t)− y(t)) + u(t) ⇔ 0 = −∂tx(t)− x(t) + y(t) + u(t)

∂ty(t) = +(x(t)− y(t)) ⇔ 0 = x(t)− ∂ty(t)− y(t)

Is the same as [
−∂t − 1 1 1

1 −∂t − 1 0

]
︸ ︷︷ ︸

=:A

·

x(t)y(t)
u(t)


︸ ︷︷ ︸

=:f

= 0

Here, A is an operator Matrix. Its entries are polynomials in ∂t , i.e. in the polynomial ring R = R[∂t].
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Smith normal form

Smith normal form
Given a matrix A (over a PID), there are invertible matrices S and T s.t.

SAT = D

where D is a matrix with non-zero entries only on the diagonal.
(D can be made unique by demanding that each diagonal entry divides the next one.)

Everything can be computed in polynomial time (as long as the PID is Euclidean).

Using the Smith normal form

Af = 0⇔ SAT T−1f︸ ︷︷ ︸
=:h

= 0

⇔ Dh = 0

If we get a GP prior for h = T−1f , we have one for f = Th.
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Prior for h

1 ∂t − 1
∂2
t + 1 0 0

 ·

h1(t)
h2(t)
h3(t)
h4(t)
h5(t)

 = 0

Since we can easily solve such ODEs:

h1(t) = 0 k1(t1, t2) = 0
h2(t) = c · exp(t) k2(t1, t2) = exp(t1) exp(t2)

h3(t) = c1 sin(t) + c2 cos(t) k3(t1, t2) = cos(t1 − t2)
h4(t) arbitrary (smooth) k4(t1, t2) = exp(−1

2(t1 − t2)
2)

h5(t) arbitrary (smooth) k5(t1, t2) = exp(−1
2(t1 − t2)

2)

joint with Andreas Besginow.
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Gaussian Processes and Linear Operator Matrices

Let T ∈ Rℓ×m and g = GP(µ, k).

Lemma
Assume that T commutes w.r.t. expectation of the relevant measures.

• (Pushforward is again a Gaussian process)
T∗g = GP(Tµ(x), Tk(x, x′)(T ′)T ) where T ′ operates on x′.
• (Realizations behave reasonable)

For g = GP(0, k) with zero mean function,H(T∗g) = TH(g).
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Example: Simple Control System

Time dependent system ∂tx(t) = t3u(t).
(We need the Jacobson form instead of the Smith form, since we are over a Weyl algebra)
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Example: Simple Control System

Time dependent system ∂tx(t) = t3u(t).
(We need the Jacobson form instead of the Smith form, since we are over a Weyl algebra)

Set an input u(t) to influence a state x(t).
Set x(1) = 0 and u(t) = 1

t4+1
for t ∈ {1, 1110 ,

12
10 , . . . , 5}.

0
1 2 3 4 5

1

u(t)

x(t)

Model: x(5) ≈ 1.436537, close to
∫ 5
1

t3

t4+1
dt ≈ 1.436551.
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Example: Simple Control System

Time dependent system ∂tx(t) = t3u(t).
(We need the Jacobson form instead of the Smith form, since we are over a Weyl algebra)

Prescribe a state x(t). Automatically construct an input u(t).

1 2 3

-2

-1

0

1

u(t)

x(t)
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Message for interpretability

Interpretability of ODEs
• GPs play nice with linear ODEs
• Can be used to learn/understand systems
• Can be used to control systems
• Can be used as a strong inductive bias
• Can be used as a very strong inductive bias
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Questions?

Gaussian processes and linear partial differential
equations
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Questions?

Gaussian processes and linear partial differential
equations
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Assumptions

Let R be an R-algebra, a ring of linear operators, and F an R-module of functions Rd → R with topology.

Assume:

1 We can compute with operators

: R allows a Gröbner basis algorithm.

2 Functions yield enough solutions

: F is an injective R-module.

3 Gaussian processes describe functions

: There is a scalar g = GP(0, k) s.t. its RKHS

H(g) is dense in F and its set of realizations is contained (a.s.) in F .

4 Operators and topology are compatible

: R acts continuously on F .

5 Gaussian processes and topology are compatible

: GPs in F are 1 : 1 with

Gaussian measures on F w.r.t. the Borel σ-algebra.

6 Gaussian processes and operators are compatible

: the operation of R on

H(g) commutes with expectation (g induces measure).

Theorem
Assumptions hold for R = R[∂x1 , . . . , ∂xd

], F = C∞(Rd,R) with
Fréchet topology, and g with SE covariance.
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Assumptions

Let R be an R-algebra, a ring of linear operators, and F an R-module of functions Rd → R with topology.

Assume:

1 We can compute with operators: R allows a Gröbner basis algorithm.

2 Functions yield enough solutions: F is an injective R-module.

3 Gaussian processes describe functions: There is a scalar g = GP(0, k) s.t. its RKHS

H(g) is dense in F and its set of realizations is contained (a.s.) in F .

4 Operators and topology are compatible: R acts continuously on F .

5 Gaussian processes and topology are compatible: GPs in F are 1 : 1 with

Gaussian measures on F w.r.t. the Borel σ-algebra.

6 Gaussian processes and operators are compatible: the operation of R on

H(g) commutes with expectation (g induces measure).

Proposition
Assumptions hold for R = R(t)⟨∂t⟩, F = C∞(D,R) with Fréchet
topology, g with SE covariance and D ⊆ R.
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Assumptions

Let R be an R-algebra, a ring of linear operators, and F an R-module of functions Rd → R with topology.

Assume:

1 We can compute with operators: R allows a Gröbner basis algorithm.

2 Functions yield enough solutions: F is an injective R-module.

3 Gaussian processes describe functions: There is a scalar g = GP(0, k) s.t. its RKHS

H(g) is dense in F and its set of realizations is contained (a.s.) in F .

4 Operators and topology are compatible: R acts continuously on F .

5 Gaussian processes and topology are compatible: GPs in F are 1 : 1 with

Gaussian measures on F w.r.t. the Borel σ-algebra.

6 Gaussian processes and operators are compatible: the operation of R on

H(g) commutes with expectation (g induces measure).

Remark
Assumptions hold for R = R[x1, . . . , xn], F = C∞(D,R) with
Fréchet topology, g with SE covariance and D ⊆ R.
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Assumptions

Let R be an R-algebra, a ring of linear operators, and F an R-module of functions Rd → R with topology.

Assume:

1 We can compute with operators: R allows a Gröbner basis algorithm.

2 Functions yield enough solutions: F is an injective R-module.

3 Gaussian processes describe functions: There is a scalar g = GP(0, k) s.t. its RKHS

H(g) is dense in F and its set of realizations is contained (a.s.) in F .

4 Operators and topology are compatible: R acts continuously on F .

5 Gaussian processes and topology are compatible: GPs in F are 1 : 1 with

Gaussian measures on F w.r.t. the Borel σ-algebra.

6 Gaussian processes and operators are compatible: the operation of R on

H(g) commutes with expectation (g induces measure).

Remark
Assumptions hold for R = R[σ1, . . . , σn], F = C∞(Rn,R) with
Fréchet topology and g with SE covariance, where σi(xj) = xi + δij .
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Assumptions

Let R be an R-algebra, a ring of linear operators, and F an R-module of functions Rd → R with topology.

Assume:

1 We can compute with operators: R allows a Gröbner basis algorithm.

2 Functions yield enough solutions: F is an injective R-module.

3 Gaussian processes describe functions: There is a scalar g = GP(0, k) s.t. its RKHS

H(g) is dense in F and its set of realizations is contained (a.s.) in F .

4 Operators and topology are compatible: R acts continuously on F .

5 Gaussian processes and topology are compatible: GPs in F are 1 : 1 with

Gaussian measures on F w.r.t. the Borel σ-algebra.

6 Gaussian processes and operators are compatible: the operation of R on

H(g) commutes with expectation (g induces measure).

Theorem
Under the above assumptions, we can construct a GP prior for
controllable systems.
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Compute a Parametrization of a System

Let M = coker(A) be a torsionless R-module, i.e. there is a mono

M
B

↪−−−−→ R
1×ℓ′′ .

Algorithm

• Compute homR(M,R) and a free hull homR(M,R) ↞ Rℓ′′×1 .
• Gives embedding

homR(homR(M,R), R) ↪→ R
1×ℓ′′ .

• If M → homR(homR(M,R), R) is monic, then

M ↪→ homR(homR(M,R), R) ↪→ R
1×ℓ′′ .

All steps are possible using Gröbner bases.

Parametrize the system by applying the exact (since F is injective) functor homR(−,F):

solF (A) = homR(M,F)
B

↞−−−−− Fℓ′′×1

(More is possible if certain Ext’s vanish.)
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Example: Maxwell’s Equations

1
x

1

y
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Example: the Koszul Complex

The matrix A =
[
x1 x2 x3

]
yields tangents of a sphere.

Parametrized by B =

 0 x3 −x2
−x3 0 x1
x2 −x1 0

.

Covariance function for tangential fields on the sphere:−y1y2 − z1z2 y1x2 z1x2
x1y2 −x1x2 − z1z2 z1y2
x1z2 y1z2 −x1x2 − y1y2

 · k
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Example: the Koszul Complex
Smooth field, conditioned at 4 points at the equator,
neighboring tangent vectors point into opposed directions
(north/south).
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Example: Intersecting two Koszul Complexes

The matrix A =
[
∂1 ∂2 ∂3

]
represents the divergence and its

kernel is the rotation B =

 0 ∂3 −∂2
−∂3 0 ∂1
∂2 −∂1 0

.

Intersecting parametrizations
We can intersect parametrizations via a pullback under suitable assumptions
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Example: Intersecting two Koszul Complexes

Intersection of tangent fields with divergence free fields.
Data: 2 points opposed at the equator with tangents pointing north:
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Dirichlet Boundary Conditions

Parametrization of Dirichlet boundary conditions

Functions vanishing on hyperplane z = 0: ⟨z⟩⊴ F = C∞(Rd,R).

Intersect parametrizations via pullback.
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Example: Dirichlet Boundary Conditions and two Koszul
Complexes
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Inhomogeneous boundary conditions

Smooth divergence free fields f on the sphere and inhomogeneous
boundary condition f3(x, y, 0) = y.
Take particular solution µ =

[
0 −z y

]T as mean.
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Message for interpretability

Interpretability of Operators
• GPs play nice with linear operators (in particular PDEs)
• Can be used to learn/understand systems
• Can be used as a very, very strong inductive bias
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Questions?

Summary
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Questions?

Summary
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There is more to say about Gaussian processes. . .

There is more to say. . .
• Larger datasets (approximations, tricks from linear algebra)
• More constructions of covariances on manifolds or graphs
• More about Bayesian optimiations
• Deep Gaussian processes (various schools)
• Stochastic differential equations (finance, control)
• Mathematical foundations
• GPs for Classification
• Unsupervised GP models
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Summary

GPs might be suitable for you, if you have. . .
• . . . a small dataset
• . . . a lot of expert knowledge
• . . . safety constraints
• . . . want to interpret your model
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Summary

Interpretability of GPs
• Covariance functions and GPs can clearly be interpreted

mathematically via a dictionary k ↔ RKHS
• Encoding expert knowledge in covariance functions is possible
• Automatically choosing a covariance function interprets data
• Covariance functions can be combined
• Interpretable parameters can be learned
• Build in (learnable) transformations
• Model quantifies uncertainty (optimization, safety)
• Include linear operators (ODEs, PDEs, shifts, boundaries)
• Sampling, conditioning and controlling of systems
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Summary

Thx!
Questions?
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