
Christopher Morris, McGill University and Mila - Quebec AI Institute
www.christophermorris.info @chrsmrrs

Introduction to Graph Neural Networks
Machine Learning with Graphs

http://www.christophermorris.info

Learning objectives

Understand learning with graphs and Graph Neural Networks:

• Understand specific challenges of graph-structured data

• Understand basic algorithms for learning with graphs

• Learn about common Graph Neural Network layers

• Understand limitations of Graph Neural Networks

• Learn how to overcome limitations of Graph Neural Networks

• Understand how to implement Graph Neural Networks using PyTorch Geometric

2

Basic definitions from graph theory

3

Node (vertex)

Edge

Defintion: Graph
A G is a pair (V(G), E(G)) with a set of nodes V(G) and a set of edges E(G) = {(v, w) ∣ v ≠ w}.

Basic definitions from graph theory

4

Edge

Neighbors of node v: N(v) = {x, y}x

y
A node with degree 2

v Node (vertex)

Defintion: Graph
A G is a pair (V(G), E(G)) with a set of nodes V(G) and a set of edges E(G) = {(v, w) ∣ v ≠ w}.

Basic definitions from graph theory

5

Subgraph

5

Defintion: Subgraph
Let be a graph and subset , then is a subgraph of with

.
G S ⊆ V(G) (S, ES) G

ES = {(u, v) ∣ u, v ∈ S} ⊆ E(G)

Basic definitions from graph theory

66

1 0

3 4

5

Graph Adjacency matrix

1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

2

Motivation: Graph data
Graphs are everywhere…

7

Social Networks
Computer Vision

Chemical
Molecules

Knowledge Bases

Motivation: A first example
Learning of molecular properties

8

Non-toxic

Toxic

Learning with graphs: Two regimes
Node-level versus graph-level learning tasks

9

Social Networks Chemical
Molecules

Node-level prediction Graph-level prediction

versus

Make prediction for
every node in the

graph
Make prediction for

whole graphs

Challenges of graph-structured data
Graphs versus images

10

versus

Graph:
Non-regular structure

Image:
Regular structure

Insight
Graphs do not have a regular structure.

Challenges of graph-structured data

11

versus

Graph G

Insight
Graphs do not have a unique representation.

Graph H

Challenges of graph-structured data

12

versus

Graph G

Insight
Graphs do not have a unique representation.

Graph H

1

2 3

4

2

3 4

1

Pre-neural approaches to learning with graphs

13

Pre-neural approaches to learning with graphs
Subgraph-based approaches

14

Idea
Count different connected subgraphs, e.g., on 4 nodes.

Connected graphs on 4 nodes

Pre-neural approaches to learning with graphs
Subgraph-based approaches

15

Idea
Count different connected subgraphs, e.g., on 4 nodes.

Connected graphs on 4 nodes

Pre-neural approaches to learning with graphs
Subgraph-based approaches

16

Idea
Count different connected subgraphs, e.g., on 4 nodes.

0 2 0 1 5

Connected graphs on 4 nodes

0

Pre-neural approaches to learning with graphs
Subgraph-based approaches

17

0
2
0
1
0

PredictionMLP

Backpropagate

Idea
Count different connected subgraphs, e.g., on 4 nodes.

Connected graphs on 4 nodes

0

Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem

18

versus

1

2 3

4

4

3 2

1

Defintion: Graph isomorphism
Two graphs are isomorphic if there exists a bijection such that

 if and only if .
G, H ϕ : V(G) → V(H)

(u, v) ∈ E(G) (ϕ(u), ϕ(v)) ∈ E(H)

Graph G Graph H

Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem

19

versus

1

2 3

4

4

3 2

1

Defintion: Graph isomorphism
Two graphs are isomorphic if there exists a bijection such that

 if and only if .
G, H ϕ : V(G) → V(H)

(u, v) ∈ E(G) (ϕ(u), ϕ(v)) ∈ E(H)

Graph G Graph H

Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem

20

Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem

21

Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

(2,2,2,0,0,0,0,0) (1,1,3,0,0,0,0,0)

Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem

22

Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

(2,2,2,2,2,2,0,0) (1,1,3,2,0,1,1,1)

PredictionMLP

Pre-neural approaches to learning with graphs

19

Idea of the algorithms
1. Extract substructures out of graph
2. Construct feature vector
3. Feed feature vector into MLP and train

PredictionMLPFCPredefine substructures

Backpropagate

Insight
Feature extraction is fixed and not part of the learning tasks.

Pre-neural approaches to learning with graphs

19

Idea of the algorithms
1. Extract substructures out of graph
2. Construct feature vector
3. Feed feature vector into MLP and train

•A Survey on Graph Kernels. Nils M. Kriege, Fredrik D. Johansson, Christopher Morris.
Applied Network Science, Machine learning with graphs, 2020.

•K. M. Borgwardt, E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck. Graph Kernels:
State-of-the-Art and Future Challenges. Foundations and Trends in Machine Learning,
2020.

https://link.springer.com/article/10.1007/s41109-019-0195-3
https://dx.doi.org/10.1561/2200000076
https://dx.doi.org/10.1561/2200000076

Introduction to Graph Neural Networks

25

Graph neural networks (GNNs)
Idea of graph neural networks

26

Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

v1 v4

v2 v3

v5

Aim
Learn -dimensional vectorial representation of each node.d

Graph neural networks (GNNs)
Idea of graph neural networks

27

Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

v1 v4

v2 v3

v5

Challenge

Aggregation happens in parallel for all nodes

Learn -dimensional representation of each node.d
Aim
Learn -dimensional vectorial representation of each node.d

Graph neural networks (GNNs)
Idea of graph neural networks

28

Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

f (l−1)(w))

Parameter matrices ∈ ℝd×d

v1 v4

v2 v3

v5 Aggregation happens in parallel for all nodes

Graph neural networks (GNNs)
Idea of graph neural networks

29

Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

f (l)(v) = fW1
merge(f (l−1)(v), fW2

aggr({{f (l−1)(w) ∣ w ∈ N(v)}}))

v1 v4

v2 v3

v5 Aggregation happens in parallel for all nodes

Graph neural networks (GNNs)
Big picture

30

G
N

N

G
N

N

G
N

N

G
N

N

M
LP Prediction

Backpropagate

Training of GNNs
Train parameters of GNNs layers and MLP using gradient descent.

Graph neural networks (GNNs)
Flavors of Graph Neural Networks

• Simple GNN layer:

• Message-passing NNs:

• Graph Convolutional NNs:

• Another 1000 more…

f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

f (l−1)(w))

f (l)(v) = fW1
merge(f (l−1)(v), fW2

aggr({{f (l−1)(w) ∣ w ∈ N(v)}}))
f (l)(v) = σ(W1 ⋅

1
|N(v) | + 1 ∑

w∈N(v)∪{v}

1
dv dw

f (l−1)(w))

31

Graph neural networks (GNNs)
GraphSage

32

o(l)(v) = W1 ⋅ f (l−1)(v) + W2 ⋅
1

|N(v) | ∑
w∈N(v)

f (l−1)(w)

f (l)(v) = σ(o(l)

∥o(l)∥2
)

Normalize features by normℓ2

Inductive Representation Learning on Large Graphs. W.L. Hamilton, R. Ying, and J. Leskovec. NeurIPS 2017

https://arxiv.org/abs/1706.02216

Graph neural networks (GNNs)
GNNs for graphs with edge features I

33

f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

[e(v, w), f (l−1)(w)])
Concatenate edge feature with neighboring node feature:

v1 v4

v2 v3

v5

Edge features
e(v1, v2)

Graph neural networks (GNNs)
GNNs for graphs with edge features II

34

f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

MLP(e(v, w)) ⋅ f (l−1)(w))

Matrix ∈ ℝd×d Matrix ∈ ℝd×1

Use MLP to map edge feature to matrix and multiple with node feature

Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. Martin Simonovsky, Nikos Komodakis. CVPR 2017

GNNs for graphs with edge features I

v1 v4

v2 v3

v5

Edge features
e(v1, v2)

Graph neural networks (GNNs)
Graph Attention Networks (GAT)

35

f (l)(v) = σ(αv,vW1 ⋅ f (l−1)(v) + ∑
w∈N(v)

αv,wW2 ⋅ f (l−1)(w))

Intuition behind GAT
Weight neighboring features differently during aggregation

Graph Attention Networks. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR 2018

Attention weight ∈ ℝ

αv,w =
exp (σ (a⊤[W3 ⋅ f (l)(v), W3 ⋅ f (l)(w)]))

∑w∈N(v)∪{v} exp (σ (a⊤[W3 ⋅ f (l)(v), W3 ⋅ f (l)(w)]))
Re
mi
nd
er
so
ftm

ax:

exp
(x i)

∑
K

j=1
exp

(x j)

Graph neural networks (GNNs)
Graph Isomorphism Networks (GIN)

36

f (l)(v) = MLP((1 + ϵ) ⋅ f (l−1)(v) + ∑
w∈N(v)

f (l−1)(w))

Learnable scalar ∈ ℝ

How Powerful are Graph Neural Networks?. Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. ICLR 2019

Graph neural networks (GNNs)
Pooling layers I

37

Question
How do we go from node features to a single graph feature?

v1 v4

v2 v3

v5

Graph neural networks (GNNs)
Pooling layers II

• Sum pooling:

• Mean pooling:

• Max pooling:

• Many more sophisticated ones, e.g., based on differentiable clustering

f(G) = ∑
v∈V(G)

f (L)(v)

f(G) =
1

|V(G) | ∑
v∈V(G)

f (L)(v)

f(G) = max (∑
v∈V(G)

f (L)(v))

38

Graph neural networks (GNNs)
GNNs with pooling

39

G
N

N

G
N

N

G
N

N

G
N

N

Backpropagate

Training of GNNs
Train parameters of GNNs layers and MLP using gradient descent.

Po
ol

M
LP Prediction

Graph neural networks (GNNs)
Pooling layers III, DiffPool

40

Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

Graph neural networks (GNNs)
Pooling layers III, DiffPool

41

Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

S(l) = softmax(GNNPool(A
(l), F(l)))

Graph representation at iteration l Features at iteration l

2

664

0.4 0.5 0.1
0.2 0.2 0.6
0.8 0.1 0.1
0.3 0.6 0.1

3

775

� new clusters

�
ol
d
cl
us
te
rs

Re
mi
nd
er
so
ftm

ax:

exp
(x i)

∑
K

j=1
exp

(x j)

Graph neural networks (GNNs)
Pooling layers III, DiffPool

42

Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

A(l+1) = S(l)T A(l)S(l)

2

4
0.4 0.2 0.8 0.3
0.5 0.2 0.1 0.6
0.1 0.6 0.1 0.1

3

5

� old clusters

�
ne
w
cl
us
te
rs

2

664

4.2 2.5 0.1
1.2 4.2 0.6
2.8 6.1 4.1
3.3 4.6 4.1

3

775

� features

�
ol
d
cl
us
te
rs

F (l)

F (l+1) =

Graph neural networks (GNNs)
Pooling layers III, DiffPool

43

Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

G
N

N

G
N

N

G
N

N

Backpropagate

D
iff

Po
ol

M
LP Prediction

D
iff

Po
ol

Limitations of GNNs

44

Graph neural networks (GNNs)
Limits of Graph Neural Networks

45

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

Questions
What are the limitations of graph neural networks?

•Do there exist non-isomorphic graphs that cannot be distinguished by any possible GNN?

versus

Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem

46

Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

(2,2,2,0,0,0,0,0) (1,1,3,0,0,0,0,0)

Graph neural networks (GNNs)
Limits of Graph Neural Networks

47

Coloring rule of the WL
 c(t)(v) = recolor(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

General form of GNNs

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

versus

(2,2,2,0,0,0,0,0) (1,1,3,0,0,0,0,0)

Graph neural networks (GNNs)
Limits of Graph Neural Networks

48

Coloring rule of the WL
 c(t)(v) = hash(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

General form of GNNs

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

versus

Theorem (Informal)
GNNs cannot be expressive than the WL algorithm in terms of distinguishing non-
isomorphic graphs.

Graph neural networks (GNNs)
Limits of Graph Neural Networks

49

versus

versus

Graph neural networks (GNNs)
Limits of Graph Neural Networks

50

Theorem (Informal)
GNNs cannot be expressive than the WL algorithm in terms of distinguishing non-
isomorphic graphs.

1 1 2 3

23

1
0
0

1
0
0

0
1
0

0
0
1

0
0
1

0
1
0

Features are consistent with labels of the graphs

51

Theorem (Informal)
GNNs cannot be expressive than the WL algorithm in terms of distinguishing non-
isomorphic graphs.

Theorem (Formal)
Let be labeled graph. Then for all and all consistent features and choices of
parameters

for all nodes .

G t ≥ 0 f (0)

W(t)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)
v and w

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

 c(t)(v) = hash(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

Graph neural networks (GNNs)
Limits of Graph Neural Networks

Graph neural networks (GNNs)
Limits of Graph Neural Networks

52

Theorem (Formal)

52

Proof sketch.
Induction on the number of iterations or layers.
Case : Since we assumed consistent features by assumption it follows that

for all nodes

t = 0

v and w .

c(0)(v) = c(0)(w) implies f (0)(v) = f (0)(w)

Let be labeled graph. Then for all and all consistent features and choices of
parameters

for all nodes .

G t ≥ 0 f (0)

W(t)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)
v and w

5353

Proof sketch (cont.).
Case : Let be two nodes and . Now assume .
Assume for induction that

for all nodes

By assumption we know that and

for all nodes

t > 0 v and w t ≥ 0 c(t+1)(v) = c(t+1)(w)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)

v and w .

c(t)(v) = c(t)(w)

{{c(t)(e) ∣ e ∈ N(v)}} = {{c(t)(e) ∣ e ∈ N(w)}}

v and w .

5454

Proof sketch (cont.).
Case : Let be two nodes and . Now assume .
Assume for induction that

for all nodes

By assumption, we know that and

for all nodes

t > 0 v and w t ≥ 0 c(t+1)(v) = c(t+1)(w)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)

v and w .

c(t)(v) = c(t)(w)

{{c(t)(e) ∣ e ∈ N(v)}} = {{c(t)(e) ∣ e ∈ N(w)}}

v and w .

Limits of Graph Neural Networks

5555

Proof sketch (cont.).
Let

 and .

By induction hypothesis, we know that

 and .

Hence, independent of choice for and it follows that

 .

Hence, it follows that

 .

Mv = {{f (t)(e) ∣ e ∈ N(v)}} Mw = {{f (t)(e) ∣ e ∈ N(w)}}

Mv = Mw f (t)(v) = f (t)(w)

fW1
merge fW1

aggr

f (t+1)(v) = f (t+1)(w)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)

Limits of Graph Neural Networks

5656

Proof sketch (cont.).
Let

 and .

By induction hypothesis, we know that

 and .

Hence, independent of choice for and it follows that

 .

Hence, it follows that

 .

Mv = {{f (t)(e) ∣ e ∈ N(v)}} Mw = {{f (t)(e) ∣ e ∈ N(w)}}

Mv = Mw f (t)(v) = f (t)(w)

fW1
merge fW1

aggr

f (t+1)(v) = f (t+1)(w)

c(t+1)(v) = c(t+1)(w) implies f (t+1)(v) = f (t+1)(w)

Graph neural networks (GNNs)
Limits of Graph Neural Networks

57

Coloring rule of the WL
 c(t)(v) = hash(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

General form of GNNs

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

versus

Theorem (Informal)
There exists choices of such that

for all nodes .

fW1
merge and fW2

aggr

c(t)(v) = c(t)(w) if and only if f (t)(v) = f (t)(w)

v and w

Graph neural networks (GNNs)
Limits of Graph Neural Networks

58

Theorem (Informal)
There exists choices of such that

for all nodes .

fW1
merge and fW2

aggr

c(t)(v) = c(t)(w) if and only if f (t)(v) = f (t)(w)

v and w

Lemma (Informal)
Let , let be a non-empty finite set. Then there exists a function
such that for all multisets with cardinality at most and it holds that
 .

m > 0 X ⊆ (0,1) d : X → (0,1)
M, M′ m M ≠ M′

∑
x∈M

d(x) ≠ ∑
x∈M′

d(x)

58

Graph neural networks (GNNs)
Limits of Graph Neural Networks

Lemma (Informal)
Let , let be a non-empty finite set. Then there exists a function
such that for all multisets with cardinality at most and it holds that
 .

m > 0 X ⊆ (0,1) d : X → (0,1)
M, M′ m M ≠ M′

∑
x∈M

d(x) ≠ ∑
x∈M′

d(x)

59

Sketch of the proof sketch.

f (l)(v) = g(W1 ⋅ f (l−1)(v) + C ⋅ ∑
w∈N(v)

d(f (l−1)(w)))

Multiset of neighbors gets unique representation

Graph neural networks (GNNs)
Limits of Graph Neural Networks

60

•How Powerful are Graph Neural Networks?. Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie
Jegelka. ICLR 2019

•Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks.
Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, Martin Grohe. AAAI 2019

https://aaai.org/ojs/index.php/AAAI/article/view/4384

Graph neural networks (GNNs)
Limits of Graph Neural Networks

61

Insight
1-WL and GNN have the same power in distinguishing non-isomorphic graphs.

V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. “On the Power of Color Refinement”. International Symposium onFundamentals of Computation Theory 2015

1-WL GNNs∇

Insight
Limits of the 1-WL are well-understood.

62

Insight
GNNs cannot distinguish very basic graph properties, e.g.,

•Cycles of different lengths

•Triangle counts

•Regular graphs

•…

Questions
How can we overcome the limitations of GNNs?

Graph neural networks (GNNs)
Limits of Graph Neural Networks

Graph neural networks (GNNs)

63

k-dimensionaler Weisfeiler-Leman algorithm

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices

•Strictly more power as k increases

BA

DC E

Idea of the algorithm
1. Initially: Two tuples get the same color if the induced subgraphs are isomorphic
2. Iteration: Two tuples get the same color if they have an equally colored neighbourhood

Graph neural networks (GNNs)

64

k-dimensionaler Weisfeiler-Leman algorithm

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices

•Strictly more power as k increases

BA

DC E

Idea of the algorithm
1. Initially: Two tuples get the same color if the induced subgraphs are isomorphic
2. Iteration: Two tuples get the same color if they have an equally colored neighbourhood

Graph neural networks (GNNs)

65

k-dimensionaler Weisfeiler-Leman algorithm

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices

•Strictly more power as k increases

BA

DC E

Idea of the algorithm
1. Initially: Two tuples get the same color if the induced subgraphs are isomorphic
2. Iteration: Two tuples get the same color if they have an equally colored neighbourhood

Graph neural networks (GNNs)

66

Higher-order GNNs

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices

•Strictly more power as k increases

Idea
Derive k-dimensional Graph Neural Networks

where t is a k-tuple.

f (l)(t) = MLP([W1 ⋅ f (l−1)(t) + W2 ⋅ ∑
s∈Ni(t)

f (l−1)(t)]i∈[k]),

Graph neural networks (GNNs)

67

Higher-order GNNs

Theorem (Informal)
The k-order GNN architecture has the same expressivity as the k-WL in terms of
distinguishing non-isomorphic graphs.

Idea
Derive k-dimensional Graph Neural Networks

where t is a k-tuple.

f (l)(t) = σ(MLP([W1 ⋅ f (l−1)(t) + W2 ⋅ ∑
s∈Ni(v)

f (l−1)(t)]i∈[k])),

Graph neural networks (GNNs)

68

Higher-order GNNs

Approximate more functions
Universality

1-WL 3-WL k-WL5-WL

1-GNN 3-GNN k-GNN5-GNN

Detect more graph structures

Theorem (Informal)
The k-order GNN architecture has the same expressivity as the k-WL in terms of
distinguishing non-isomorphic graphs.

Waiss Azizian, Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural Networks. ICLR 2021

https://dblp.org/pid/295/5387.html
https://dblp.org/db/conf/iclr/iclr2021.html#AzizianL21

Graph neural networks (GNNs)
Limits of Graph Neural Networks

69

Problem
The k-WL’s and k-order GNN’s memory complexity is in . Ω(nk)

Challenge
Design enhanced GNNs that overcome 1-WL limitation but are still scalable.

Graph neural networks (GNNs)
Limits of Graph Neural Networks

70

Subgraph GNNs
Enhance node features with subgraph information

•Fix a number of subgraphs in advance

•Compute “role” (formally, automorphism type) of each node with regards to these
subgraphs

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, Michael M. Bronstein.
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting. CoRR abs/2006.09252 (2020)

Graph neural networks (GNNs)
Limits of Graph Neural Networks

71

k-reconstruction GNNs
Break up symmetries of 1-WL by removing nodes

•Remove every k-node subgraph from a given graph

•Use GNN to compute representation for resulting graph

•Pool together resulting representation

versus

Leonardo Cotta, Christopher Morris, Bruno Ribeiro. Reconstruction for Powerful Graph Representations. NeurIPS 2021

https://dblp.org/pid/183/1858.html
https://dblp.org/pid/15/606.html

Graph neural networks (GNNs)
Limits of Graph Neural Networks

72

k-reconstruction GNNs
Break up symmetries of 1-WL by removing node

•Remove every k-node subgraph from a given graph

•Use GNN to compute representation for resulting graph

•Pool together resulting representation

versus

Leonardo Cotta, Christopher Morris, Bruno Ribeiro. Reconstruction for Powerful Graph Representations. NeurIPS 2021

https://dblp.org/pid/183/1858.html
https://dblp.org/pid/15/606.html

Graph neural networks (GNNs)
Limits of Graph Neural Networks

73

k-reconstruction GNNs
Break up symmetries of 1-WL by removing node

•Remove every k-node subgraph from a given graph

•Use GNN to compute representation for resulting graph

•Pool together resulting representation

versus

Leonardo Cotta, Christopher Morris, Bruno Ribeiro. Reconstruction for Powerful Graph Representations. NeurIPS 2021

https://dblp.org/pid/183/1858.html
https://dblp.org/pid/15/606.html

Graph neural networks (GNNs)
Limits of Graph Neural Networks

74

Local k-WL
Consider only certain neighbors of a k-tuple.

BA

DC E

Idea of the local algorithm
1. Initial: Two tuples get the same color if the induced subgraphs are isomorphic
2. Iteration: Two tuples get the same color if they have an equally colored local

neighbourhood

Graph neural networks (GNNs)
Limits of Graph Neural Networks

75

Local k-WL
Consider only certain neighbors of a k-tuple.

BA

DC E

Idea of the local algorithm
1. Initial: Two tuples get the same color if the induced subgraphs are isomorphic
2. Iteration: Two tuples get the same color if they have an equally colored local

neighbourhood

Graph neural networks (GNNs)
Limits of Graph Neural Networks

Local k-WL
Consider only local neighbors of a k-tuple.

•Takes sparsity of underlying graph into account

•Has the same power as ordinary k-WL, but more iterations are needed

BA

DC E

Graph neural networks (GNNs)
Limits of Graph Neural Networks

77

Idea
Derive local k-dimensional Graph Neural Networks

Where t is k-tuple.

f (l)(t) = MLP([W1 ⋅ f (l−1)(t) + W2 ⋅ ∑
s∈NL

i (t)

f (l−1)(t)]i∈[k]),

Christopher Morris, Gaurav Rattan, Petra Mutzel.
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings. NeurIPS 2020

https://dblp.org/pid/132/6971.html
https://dblp.org/pid/m/PetraMutzel.html
https://dblp.org/db/conf/nips/neurips2020.html#0001RM20

Graph neural networks (GNNs)
Limits of Graph Neural Networks

78

•Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M.
Kriege, Martin Grohe, Matthias Fey, Karsten M. Borgwardt. Weisfeiler and
Leman go Machine Learning: The Story so far. CoRR abs/2112.09992 (2021)

https://dblp.org/pid/30/5015.html
https://dblp.org/pid/181/6629.html
https://dblp.org/pid/119/8860.html
https://dblp.org/pid/97/8178.html
https://dblp.org/pid/97/8178.html
https://dblp.org/pid/g/MGrohe.html
https://dblp.org/pid/180/9174.html
https://dblp.org/pid/11/3733.html
https://dblp.org/db/journals/corr/corr2112.html#abs-2112-09992

Implementing GNNs

79

Graph neural networks (GNNs)
Implementation of GNNs

80

Implementation Frameworks
Nowadays there exist quite a few good frameworks

•PyTorch Geometric (PyG, based on PyTorch, www.pyg.org)

•Deep Graph Library (DGL, based on PyTorch and TensorFlow, www.dgl.ai)

•Spektral (based on Keras, www.graphneural.network)

Challenge
Implement simple GNN layer in PyG:
 f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))

Graph neural networks (GNNs)
Implementation of GNNs

81

Challenge
Implement simple GNN layer in PyG:
 f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))
class SimpleLayer(MessagePassing):
 def __init__(self, in_channels, out_channels):
 super().__init__(aggr='add')

 self.w_1 = torch.nn.Linear(in_channels, out_channels)
 self.w_2 = torch.nn.Linear(in_channels, out_channels)

 def forward(self, features, edge_index):

 features_new = self.w_2(features)
 feature_self = self.w_1(features)

 out = feature_self + self.propagate(edge_index, x=features_new)

 return out

Graph neural networks (GNNs)
Implementation of GNNs

82

Challenge
Implement simple GNN layer in PyG:
 f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))
class SimpleArchitecture(torch.nn.Module):
 def __init__(self):
 super().__init__()
 self.conv1 = SimpleLayer(dataset.num_node_features, 16)
 self.conv2 = SimpleLayer(16, dataset.num_classes)

 def forward(self, data):
 features, edge_index = data.x, data.edge_index

 features = self.conv1(features, edge_index)
 features = F.relu(features)
 features = self.conv2(features, edge_index)

 return F.log_softmax(features, dim=1)

Graph neural networks (GNNs)
Implementation of GNNs

83

Challenge
Implement simple GNN layer in PyG:
 f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SimpleArchitecture().to(device)
data = dataset[0].to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

model.train()
for epoch in range(200):
 optimizer.zero_grad()
 out = model(data)
 loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
 loss.backward()
 optimizer.step()

Conclusion
Key take aways

1. Challenges of learning with graphs: Graphs due not have a unique representation

2. Learned about basic algorithms for extracting features out of graphs

1. Substructure counting

2. Weisfeiler-Leman algorithm

3. Learned about common GNN layers

4. Learned about the limitations of GNNs, i.e., they are limited by the Weisfeiler-Leman
algorithm

5. Learned how to overcome the limitations of GNNs

6. Learned how to implement a GNN layer in PyTorch Geometric

84

