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Learning objectives

Understand learning with graphs and Graph Neural Networks: 

• Understand specific challenges of graph-structured data  

• Understand basic algorithms for learning with graphs 

• Learn about common Graph Neural Network layers 

• Understand limitations of Graph Neural Networks 

• Learn how to overcome limitations of Graph Neural Networks 

• Understand how to implement Graph Neural Networks using PyTorch Geometric
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Basic definitions from graph theory
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Node (vertex)

Edge

Defintion: Graph
A G is a pair (V(G), E(G)) with a set of nodes V(G) and a set of edges E(G) = {(v, w) ∣ v ≠ w}.



Basic definitions from graph theory
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Edge

Neighbors of node v: N(v) = {x, y}x 

y
A node with degree 2

v Node (vertex)

Defintion: Graph
A G is a pair (V(G), E(G)) with a set of nodes V(G) and a set of edges E(G) = {(v, w) ∣ v ≠ w}.



Basic definitions from graph theory
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Subgraph

5

Defintion: Subgraph
Let  be a graph and subset , then  is a subgraph of  with 

.
G S ⊆ V(G) (S, ES) G

ES = {(u, v) ∣ u, v ∈ S} ⊆ E(G)



Basic definitions from graph theory
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1 0 

3 4 

5 

Graph Adjacency matrix

1 1 0 0 
1 0 0 1 1 
1 0 0 1 0 
0 1 1 0 1 
0 1 0 1 0 

2 



Motivation: Graph data
Graphs are everywhere…
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Social Networks 
Computer Vision

Chemical 
Molecules

Knowledge Bases 



Motivation: A first example
Learning of molecular properties
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Non-toxic 

Toxic 



Learning with graphs: Two regimes
Node-level versus graph-level learning tasks
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Social Networks Chemical 
Molecules

Node-level prediction Graph-level prediction

versus 

Make prediction for 
every node in the 

graph 
Make prediction for 

whole graphs



Challenges of graph-structured data
Graphs versus images
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versus 

Graph: 
Non-regular structure 

Image: 
Regular structure 

Insight
Graphs do not have a regular structure.



Challenges of graph-structured data
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versus 

Graph G 

Insight
Graphs do not have a unique representation.

Graph H 



Challenges of graph-structured data
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versus 

Graph G 

Insight
Graphs do not have a unique representation.

Graph H 

1 

2 3 

4 

2 

3 4 

1 



Pre-neural approaches to learning with graphs
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Pre-neural approaches to learning with graphs
Subgraph-based approaches

14

Idea
Count different connected subgraphs, e.g., on 4 nodes.

Connected graphs on 4 nodes



Pre-neural approaches to learning with graphs
Subgraph-based approaches
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Idea
Count different connected subgraphs, e.g., on 4 nodes.

Connected graphs on 4 nodes



Pre-neural approaches to learning with graphs
Subgraph-based approaches
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Idea
Count different connected subgraphs, e.g., on 4 nodes.

0 2 0 1 5

Connected graphs on 4 nodes

0



Pre-neural approaches to learning with graphs
Subgraph-based approaches
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0
2
0
1
0

PredictionMLP

Backpropagate

Idea
Count different connected subgraphs, e.g., on 4 nodes.

Connected graphs on 4 nodes

0



Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem 
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versus 

1 

2 3 

4 

4 

3 2 

1 

Defintion: Graph isomorphism 
Two graphs  are isomorphic if there exists a bijection  such that  

 if and only if .
G, H ϕ : V(G) → V(H)

(u, v) ∈ E(G) (ϕ(u), ϕ(v)) ∈ E(H)

Graph G Graph H 



Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem 
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versus 

1 

2 3 

4 

4 

3 2 

1 

Defintion: Graph isomorphism 
Two graphs  are isomorphic if there exists a bijection  such that  

 if and only if .
G, H ϕ : V(G) → V(H)

(u, v) ∈ E(G) (ϕ(u), ϕ(v)) ∈ E(H)

Graph G Graph H 



Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem 

20

Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.



Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem 
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Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

(2,2,2,0,0,0,0,0) (1,1,3,0,0,0,0,0)



Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem 
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Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

(2,2,2,2,2,2,0,0) (1,1,3,2,0,1,1,1)

PredictionMLP



Pre-neural approaches to learning with graphs

19

Idea of the algorithms
1. Extract substructures out of graph 
2. Construct feature vector 
3. Feed feature vector into MLP and train

PredictionMLPFCPredefine substructures

Backpropagate

Insight
Feature extraction is fixed and not part of the learning tasks.



Pre-neural approaches to learning with graphs

19

Idea of the algorithms
1. Extract substructures out of graph 
2. Construct feature vector 
3. Feed feature vector into MLP and train

•A Survey on Graph Kernels. Nils M. Kriege, Fredrik D. Johansson, Christopher Morris. 
Applied Network Science, Machine learning with graphs, 2020. 

•K. M. Borgwardt, E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck. Graph Kernels: 
State-of-the-Art and Future Challenges. Foundations and Trends in Machine Learning, 
2020. 

 

https://link.springer.com/article/10.1007/s41109-019-0195-3
https://dx.doi.org/10.1561/2200000076
https://dx.doi.org/10.1561/2200000076


Introduction to Graph Neural Networks

25



Graph neural networks (GNNs)
Idea of graph neural networks

26

Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

v1 v4

v2 v3

v5

Aim
Learn -dimensional vectorial representation of each node.d



Graph neural networks (GNNs)
Idea of graph neural networks
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Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

v1 v4

v2 v3

v5

Challenge

Aggregation happens in parallel for all nodes

Learn -dimensional representation of each node.d
Aim
Learn -dimensional vectorial representation of each node.d



Graph neural networks (GNNs)
Idea of graph neural networks
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Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

f (l−1)(w))

Parameter matrices ∈ ℝd×d

v1 v4

v2 v3

v5 Aggregation happens in parallel for all nodes



Graph neural networks (GNNs)
Idea of graph neural networks
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Idea of GNNs
In each layer, aggregate features of neighbors to update feature of a node.

f (l)(v) = fW1
merge(f (l−1)(v), fW2

aggr({{f (l−1)(w) ∣ w ∈ N(v)}}))

v1 v4

v2 v3

v5 Aggregation happens in parallel for all nodes



Graph neural networks (GNNs)
Big picture
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G
N

N

G
N

N

G
N

N

G
N

N

M
LP Prediction

Backpropagate

Training of GNNs
Train parameters of GNNs layers and MLP using gradient descent.



Graph neural networks (GNNs)
Flavors of Graph Neural Networks

• Simple GNN layer:   

• Message-passing NNs:  

• Graph Convolutional NNs:  

• Another 1000 more…

f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

f (l−1)(w))

f (l)(v) = fW1
merge(f (l−1)(v), fW2

aggr({{f (l−1)(w) ∣ w ∈ N(v)}}))
f (l)(v) = σ(W1 ⋅

1
|N(v) | + 1 ∑

w∈N(v)∪{v}

1
dv dw

f (l−1)(w))

31



Graph neural networks (GNNs)
GraphSage
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o(l)(v) = W1 ⋅ f (l−1)(v) + W2 ⋅
1

|N(v) | ∑
w∈N(v)

f (l−1)(w)

f (l)(v) = σ( o(l)

∥o(l)∥2
)

Normalize features by  normℓ2

Inductive Representation Learning on Large Graphs. W.L. Hamilton, R. Ying, and J. Leskovec. NeurIPS 2017 

https://arxiv.org/abs/1706.02216


Graph neural networks (GNNs)
GNNs for graphs with edge features I
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f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

[e(v, w), f (l−1)(w)])
Concatenate edge feature with neighboring node feature: 

v1 v4

v2 v3

v5

Edge features 
e(v1, v2)



Graph neural networks (GNNs)
GNNs for graphs with edge features II
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f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑
w∈N(v)

MLP(e(v, w)) ⋅ f (l−1)(w))

Matrix ∈ ℝd×d Matrix ∈ ℝd×1

Use MLP to map edge feature to matrix and multiple with node feature

Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. Martin Simonovsky, Nikos Komodakis. CVPR 2017

GNNs for graphs with edge features I

v1 v4

v2 v3

v5

Edge features 
e(v1, v2)



Graph neural networks (GNNs)
Graph Attention Networks (GAT)
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f (l)(v) = σ(αv,vW1 ⋅ f (l−1)(v) + ∑
w∈N(v)

αv,wW2 ⋅ f (l−1)(w))

Intuition behind GAT
Weight neighboring features differently during aggregation

Graph Attention Networks. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR 2018

Attention weight ∈ ℝ

αv,w =
exp (σ (a⊤[W3 ⋅ f (l)(v), W3 ⋅ f (l)(w)]))

∑w∈N(v)∪{v} exp (σ (a⊤[W3 ⋅ f (l)(v), W3 ⋅ f (l)(w)]))
Re
mi
nd
er 
so
ftm

ax:
 

exp
(x i)

∑
K

j=1
exp

(x j)



Graph neural networks (GNNs)
Graph Isomorphism Networks (GIN)

36

f (l)(v) = MLP((1 + ϵ) ⋅ f (l−1)(v) + ∑
w∈N(v)

f (l−1)(w))

Learnable scalar ∈ ℝ

How Powerful are Graph Neural Networks?. Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. ICLR 2019



Graph neural networks (GNNs)
Pooling layers I
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Question
How do we go from node features to a single graph feature?

v1 v4

v2 v3

v5



Graph neural networks (GNNs)
Pooling layers II

• Sum pooling:   

• Mean pooling:   

• Max pooling:   

• Many more sophisticated ones, e.g., based on differentiable clustering

f(G) = ∑
v∈V(G)

f (L)(v)

f(G) =
1

|V(G) | ∑
v∈V(G)

f (L)(v)

f(G) = max ( ∑
v∈V(G)

f (L)(v))

38



Graph neural networks (GNNs)
GNNs with pooling

39

G
N

N

G
N

N

G
N

N

G
N

N

Backpropagate

Training of GNNs
Train parameters of GNNs layers and MLP using gradient descent.

Po
ol

M
LP Prediction



Graph neural networks (GNNs)
Pooling layers III, DiffPool

40

Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.



Graph neural networks (GNNs)
Pooling layers III, DiffPool

41

Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

S(l) = softmax(GNNPool(A
(l), F(l)))

Graph representation at iteration l Features at iteration l

2

664

0.4 0.5 0.1
0.2 0.2 0.6
0.8 0.1 0.1
0.3 0.6 0.1

3

775

� new clusters
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ol
d
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Re
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er 
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ax:
 

exp
(x i)

∑
K

j=1
exp

(x j)



Graph neural networks (GNNs)
Pooling layers III, DiffPool
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Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

A(l+1) = S(l)T A(l)S(l)

2

4
0.4 0.2 0.8 0.3
0.5 0.2 0.1 0.6
0.1 0.6 0.1 0.1

3

5

� old clusters

�
ne
w
cl
us
te
rs

2

664

4.2 2.5 0.1
1.2 4.2 0.6
2.8 6.1 4.1
3.3 4.6 4.1

3

775

� features

�
ol
d
cl
us
te
rs

F (l)

F (l+1) =



Graph neural networks (GNNs)
Pooling layers III, DiffPool
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Intuition behind DiffPool
Coarsen graphs by clustering similar nodes together.

Hierarchical Graph Representation Learning with Differentiable Pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

G
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N
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N

N
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N

N

Backpropagate

D
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Po
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M
LP Prediction
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Limitations of GNNs 
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Graph neural networks (GNNs)
Limits of Graph Neural Networks

45

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

Questions
What are the limitations of graph neural networks? 

•Do there exist non-isomorphic graphs that cannot be distinguished by any possible GNN?

versus



Weisfeiler-Leman Algorithm
A simple algorithm for the graph isomorphism problem 

46

Idea of the algorithm
Iteratively colors nodes based on colors of neighbors.

(2,2,2,0,0,0,0,0) (1,1,3,0,0,0,0,0)



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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Coloring rule of the WL
           c(t)(v) = recolor(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

General form of GNNs

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

versus

(2,2,2,0,0,0,0,0) (1,1,3,0,0,0,0,0)



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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Coloring rule of the WL
           c(t)(v) = hash(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

General form of GNNs

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

versus

Theorem (Informal)
GNNs cannot be expressive than the WL algorithm in terms of distinguishing non-
isomorphic graphs.



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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versus

versus



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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Theorem (Informal)
GNNs cannot be expressive than the WL algorithm in terms of distinguishing non-
isomorphic graphs.

1 1 2 3

23

1
0
0

1
0
0

0
1
0

0
0
1

0
0
1

0
1
0

Features are consistent with labels of the graphs
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Theorem (Informal)
GNNs cannot be expressive than the WL algorithm in terms of distinguishing non-
isomorphic graphs.

Theorem (Formal)
Let  be labeled graph. Then for all  and all consistent features  and choices of 
parameters   
                                     
for all nodes .

G t ≥ 0 f (0)

W(t)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)
v and w

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

           c(t)(v) = hash(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

Graph neural networks (GNNs)
Limits of Graph Neural Networks



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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Theorem (Formal)

52

Proof sketch. 
Induction on the number of iterations or layers. 
Case : Since we assumed consistent features by assumption it follows that 
  

for all nodes 

t = 0

v and w .

c(0)(v) = c(0)(w) implies f (0)(v) = f (0)(w)

Let  be labeled graph. Then for all  and all consistent features  and choices of 
parameters   
                                      
for all nodes .

G t ≥ 0 f (0)

W(t)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)
v and w
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Proof sketch (cont.). 
Case : Let  be two nodes and . Now assume . 
Assume for induction that   

  

for all nodes  

By assumption we know that  and 
       
                       

for all nodes  

t > 0 v and w t ≥ 0 c(t+1)(v) = c(t+1)(w)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)

v and w .

c(t)(v) = c(t)(w)

{{c(t)(e) ∣ e ∈ N(v)}} = {{c(t)(e) ∣ e ∈ N(w)}}

v and w .
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Proof sketch (cont.). 
Case : Let  be two nodes and . Now assume . 
Assume for induction that   

  

for all nodes  

By assumption, we know that  and 
       
                       

for all nodes  

t > 0 v and w t ≥ 0 c(t+1)(v) = c(t+1)(w)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)

v and w .

c(t)(v) = c(t)(w)

{{c(t)(e) ∣ e ∈ N(v)}} = {{c(t)(e) ∣ e ∈ N(w)}}

v and w .



Limits of Graph Neural Networks

5555

Proof sketch (cont.). 
Let 
  
                      and     . 

By induction hypothesis, we know that 

                     and    . 

Hence, independent of choice for  and  it follows that  

                . 

Hence, it follows that  

                . 

Mv = {{f (t)(e) ∣ e ∈ N(v)}} Mw = {{f (t)(e) ∣ e ∈ N(w)}}

Mv = Mw f (t)(v) = f (t)(w)

fW1
merge fW1

aggr

f (t+1)(v) = f (t+1)(w)

c(t)(v) = c(t)(w) implies f (t)(v) = f (t)(w)



Limits of Graph Neural Networks
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Proof sketch (cont.). 
Let 
  
                      and     . 

By induction hypothesis, we know that 

                     and    . 

Hence, independent of choice for  and  it follows that  

                . 

Hence, it follows that  

                . 

Mv = {{f (t)(e) ∣ e ∈ N(v)}} Mw = {{f (t)(e) ∣ e ∈ N(w)}}

Mv = Mw f (t)(v) = f (t)(w)

fW1
merge fW1

aggr

f (t+1)(v) = f (t+1)(w)

c(t+1)(v) = c(t+1)(w) implies f (t+1)(v) = f (t+1)(w)



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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Coloring rule of the WL
           c(t)(v) = hash(c(t−1)(v), {{c(t−1)(w) ∣ w ∈ N(v)}})

General form of GNNs

f (t)(v) = fW1
merge(f (t−1)(v), fW2

aggr({{f (t−1)(w) ∣ w ∈ N(v)}}))

versus

Theorem (Informal)
There exists choices of  such that 

                                      

for all nodes . 

fW1
merge and fW2

aggr

c(t)(v) = c(t)(w) if and only if f (t)(v) = f (t)(w)

v and w



Graph neural networks (GNNs)
Limits of Graph Neural Networks

58

Theorem (Informal)
There exists choices of  such that 

                                      

for all nodes . 

fW1
merge and fW2

aggr

c(t)(v) = c(t)(w) if and only if f (t)(v) = f (t)(w)

v and w

Lemma (Informal)
Let , let  be a non-empty finite set. Then there exists a function  
such that for all multisets  with cardinality at most  and   it holds that  
                                                        .

m > 0 X ⊆ (0,1) d : X → (0,1)
M, M′ m M ≠ M′ 

∑
x∈M

d(x) ≠ ∑
x∈M′ 

d(x)

58



Graph neural networks (GNNs)
Limits of Graph Neural Networks

Lemma (Informal)
Let , let  be a non-empty finite set. Then there exists a function  
such that for all multisets  with cardinality at most  and   it holds that  
                                                        .

m > 0 X ⊆ (0,1) d : X → (0,1)
M, M′ m M ≠ M′ 

∑
x∈M

d(x) ≠ ∑
x∈M′ 

d(x)

59

Sketch of the proof sketch. 

f (l)(v) = g(W1 ⋅ f (l−1)(v) + C ⋅ ∑
w∈N(v)

d( f (l−1)(w)))

Multiset of neighbors gets unique representation 



Graph neural networks (GNNs)
Limits of Graph Neural Networks
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•How Powerful are Graph Neural Networks?. Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie 
Jegelka. ICLR 2019 

•Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. 
Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav 
Rattan, Martin Grohe. AAAI 2019

https://aaai.org/ojs/index.php/AAAI/article/view/4384


Graph neural networks (GNNs)
Limits of Graph Neural Networks
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Insight
1-WL and GNN have the same power in distinguishing non-isomorphic graphs.

V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. “On the Power of Color Refinement”. International Symposium onFundamentals of Computation Theory 2015

1-WL GNNs∇

Insight
Limits of the 1-WL are well-understood.



62

Insight
GNNs cannot distinguish very basic graph properties, e.g., 

•Cycles of different lengths 

•Triangle counts  

•Regular graphs 

•…

Questions
How can we overcome the limitations of GNNs?

Graph neural networks (GNNs)
Limits of Graph Neural Networks



Graph neural networks (GNNs)

63

k-dimensionaler Weisfeiler-Leman algorithm

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices 

•Strictly more power as k increases 

BA

DC E

Idea of the algorithm
1. Initially: Two tuples get the same color if the induced subgraphs are isomorphic 
2. Iteration: Two tuples get the same color if they have an equally colored neighbourhood



Graph neural networks (GNNs)
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k-dimensionaler Weisfeiler-Leman algorithm

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices 

•Strictly more power as k increases 

BA

DC E

Idea of the algorithm
1. Initially: Two tuples get the same color if the induced subgraphs are isomorphic 
2. Iteration: Two tuples get the same color if they have an equally colored neighbourhood



Graph neural networks (GNNs)
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k-dimensionaler Weisfeiler-Leman algorithm

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices 

•Strictly more power as k increases 

BA

DC E

Idea of the algorithm
1. Initially: Two tuples get the same color if the induced subgraphs are isomorphic 
2. Iteration: Two tuples get the same color if they have an equally colored neighbourhood



Graph neural networks (GNNs)
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Higher-order GNNs

k-dimensionaler Weisfeiler-Leman algorithm (Babai et al.)
•Colors k-tuples defined over the set of vertices 

•Strictly more power as k increases 

Idea
Derive k-dimensional Graph Neural Networks 

                              

where t is a k-tuple. 

f (l)(t) = MLP([W1 ⋅ f (l−1)(t) + W2 ⋅ ∑
s∈Ni(t)

f (l−1)(t)]i∈[k]),



Graph neural networks (GNNs)
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Higher-order GNNs

Theorem (Informal)
The k-order GNN architecture has the same expressivity as the k-WL in terms of 
distinguishing non-isomorphic graphs. 

Idea
Derive k-dimensional Graph Neural Networks 

                              

where t is a k-tuple. 

f (l)(t) = σ(MLP([W1 ⋅ f (l−1)(t) + W2 ⋅ ∑
s∈Ni(v)

f (l−1)(t)]i∈[k])),



Graph neural networks (GNNs)
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Higher-order GNNs

Approximate more functions
Universality

1-WL 3-WL k-WL5-WL

1-GNN 3-GNN k-GNN5-GNN

Detect more graph structures

Theorem (Informal)
The k-order GNN architecture has the same expressivity as the k-WL in terms of 
distinguishing non-isomorphic graphs. 

Waiss Azizian, Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural Networks. ICLR 2021

https://dblp.org/pid/295/5387.html
https://dblp.org/db/conf/iclr/iclr2021.html#AzizianL21
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Problem
The k-WL’s and k-order GNN’s memory complexity is in . Ω(nk)

Challenge
Design enhanced GNNs that overcome 1-WL limitation but are still scalable.
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Subgraph GNNs
Enhance node features with subgraph information 

•Fix a number of subgraphs in advance 

•Compute “role” (formally, automorphism type) of each node with regards to these 
subgraphs

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, Michael M. Bronstein.  
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting. CoRR abs/2006.09252 (2020) 
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k-reconstruction GNNs
Break up symmetries of 1-WL by removing nodes 

•Remove every k-node subgraph from a given graph 

•Use GNN to compute representation for resulting graph 

•Pool together resulting representation

versus

Leonardo Cotta, Christopher Morris, Bruno Ribeiro. Reconstruction for Powerful Graph Representations. NeurIPS 2021

https://dblp.org/pid/183/1858.html
https://dblp.org/pid/15/606.html
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k-reconstruction GNNs
Break up symmetries of 1-WL by removing node 

•Remove every k-node subgraph from a given graph 

•Use GNN to compute representation for resulting graph 

•Pool together resulting representation

versus
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Local k-WL
Consider only certain neighbors of a k-tuple.

BA

DC E

Idea of the local algorithm
1. Initial: Two tuples get the same color if the induced subgraphs are isomorphic 
2. Iteration: Two tuples get the same color if they have an equally colored local 

neighbourhood
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Local k-WL
Consider only certain neighbors of a k-tuple.

BA

DC E

Idea of the local algorithm
1. Initial: Two tuples get the same color if the induced subgraphs are isomorphic 
2. Iteration: Two tuples get the same color if they have an equally colored local 

neighbourhood
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Local k-WL
Consider only local neighbors of a k-tuple. 

•Takes sparsity of underlying graph into account 

•Has the same power as ordinary k-WL, but more iterations are needed

BA

DC E
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Idea
Derive local k-dimensional Graph Neural Networks 

                              

Where t is k-tuple. 

f (l)(t) = MLP([W1 ⋅ f (l−1)(t) + W2 ⋅ ∑
s∈NL

i (t)

f (l−1)(t)]i∈[k]),

Christopher Morris, Gaurav Rattan, Petra Mutzel. 
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings. NeurIPS 2020

https://dblp.org/pid/132/6971.html
https://dblp.org/pid/m/PetraMutzel.html
https://dblp.org/db/conf/nips/neurips2020.html#0001RM20
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•Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. 
Kriege, Martin Grohe, Matthias Fey, Karsten M. Borgwardt. Weisfeiler and 
Leman go Machine Learning: The Story so far. CoRR abs/2112.09992 (2021)

https://dblp.org/pid/30/5015.html
https://dblp.org/pid/181/6629.html
https://dblp.org/pid/119/8860.html
https://dblp.org/pid/97/8178.html
https://dblp.org/pid/97/8178.html
https://dblp.org/pid/g/MGrohe.html
https://dblp.org/pid/180/9174.html
https://dblp.org/pid/11/3733.html
https://dblp.org/db/journals/corr/corr2112.html#abs-2112-09992
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Implementation Frameworks
Nowadays there exist quite a few good frameworks 

•PyTorch Geometric (PyG, based on PyTorch, www.pyg.org) 

•Deep Graph Library (DGL, based on PyTorch and TensorFlow, www.dgl.ai) 

•Spektral (based on Keras, www.graphneural.network)

Challenge
Implement simple GNN layer in PyG: 
                                     f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))
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Challenge
Implement simple GNN layer in PyG: 
                                     f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))
class SimpleLayer(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super().__init__(aggr='add')

        self.w_1 = torch.nn.Linear(in_channels, out_channels)
        self.w_2 = torch.nn.Linear(in_channels, out_channels)

    def forward(self, features, edge_index):

        features_new =  self.w_2(features)
        feature_self = self.w_1(features)

        out = feature_self + self.propagate(edge_index, x=features_new)

        return out
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Challenge
Implement simple GNN layer in PyG: 
                                     f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))
class SimpleArchitecture(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = SimpleLayer(dataset.num_node_features, 16)
        self.conv2 = SimpleLayer(16, dataset.num_classes)

    def forward(self, data):
        features, edge_index = data.x, data.edge_index

        features = self.conv1(features, edge_index)
        features = F.relu(features)
        features = self.conv2(features, edge_index)

        return F.log_softmax(features, dim=1)
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Challenge
Implement simple GNN layer in PyG: 
                                     f (l)(v) = σ(W1 ⋅ f (l−1)(v) + W2 ⋅ ∑

w∈N(v)

f (l−1)(w))

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SimpleArchitecture().to(device)
data = dataset[0].to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

model.train()
for epoch in range(200):
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()



Conclusion
Key take aways

1. Challenges of learning with graphs: Graphs due not have a unique representation 

2. Learned about basic algorithms for extracting features out of graphs 

1. Substructure counting 

2. Weisfeiler-Leman algorithm 

3. Learned about common GNN layers  

4. Learned about the limitations of GNNs, i.e., they are limited by the Weisfeiler-Leman 
algorithm 

5. Learned how to overcome the limitations of GNNs 

6. Learned how to implement a GNN layer in PyTorch Geometric
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