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Knowledge Graphs

Analgesics

Protein
Activator

treatment

Acadesine

Knowledge representation where statements correspond to nodes and edges, where:
- Nodes are labelled and represent concepts, entities, or data values

- Edges are labelled and represent binary connections between nodes

- Concepts and properties are defined in a vocabulary or ontology (semantics)
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Evolution of Knowledge Graphs
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Knowledge Graphs & Open World Assumption

Analgesics

Protein
Activator

treatment

Acadesine

Closed World Assumption The treatment for Mexiletine is not in the graph >
Mexiletine is not used in treatments.
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Knowledge Graphs & Open World Assumption

Analgesics

Protein
Activator

treatment

Acadesine

Open World Assumption The treatment for Mexiletine is not in the graph =
It is unknown whether Mexiletine is used in a treatment or not.
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Applications of Knowledge Graphs

Information * Websearch
Retrieval * Question answering

* Personal assistant

*  Product understanding
Recommender systems
* Chatbots

E-commerce

.- * Knowledge discovery
Cognitive Systems » Integrating interdisciplinary knowledge

* Drug discovery and repurposing

* Medical treatment recommendation
Reducing field experiments

* Integrating interdisciplinary knowledge

Natural Sciences
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Google Knowledge Graph (1/2)

GO gle who was the president of the united states in 1994
A Al B News &) Images { Shopping [*] Videos i More

About 333,000.000 results (1,70 seconds)

Prasicent of the United States (1994)

Bill Clinton

People also search for

George W.  Hillary

George H
Bush Rodham W. Bush
Clinton

=&« Question Answering

Settings Tools

View 15+ more
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Google Knowledge Graph (2/2)
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Knowledge Graphs on the Web
The Linked Open Data Cloud

- Depicts interlinked knowledge graphs.
- Each node is a knowledge graph.

- Edges represent links between the
statements in the datasets.

- >1,000 knowledge graphs,
billions of statements.

https://lod-cloud.net/ s
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DBpedia (1/2)

T
Iad

WIKIPEDIA

The Free Encyclopedia

Semi-structured data
from Wikipedia

https://www.dbpedia.org/
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DBpedia (2/2)
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About: Germany
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inhabitants, Gamany is the most populous member state of the European Union. After the United States, it is the second most
popuiar mmigration destination in the werd, Gemany’s capital and largest metropois is Berfin, Major urban areas nclude Ruty,
Hamburg, Munich, Cologne, Franidurt and Stuttgart

Property Vaboo
o PopuiatecPlace orea Totad o 357022.0910454868
o 3571680

e PopuiatesPiace DopulatonDensty o 225.09755883024595
. 2270

o ADALTACT . y Vg k Do, pronounced [davtfant), ofcally the Federal Reputlc of Germarnry ([German:
Bundesreputitk Dectachiand, | & & federal par y reputic In Certral Europe. It iInchudes 16 comtituent states,
COwers an area of 357 021 square kilometres (137,847 sq mi), and has a lapely temperate seasonal chmate. Wit about B2 milon
Intabiants, Germany & the most popuicus member state of Te Ewropean Union. Afler $e United States, | s the second most
POpular Imemigration destination in the workd. Germarry's capitel and lrgest metropolis & Beriin. Magor urban areas inciude fute,
Hamburp, Munich, Cologne, Frankiun and Stumgant. Virious Genmanio tribes haree 000uped The normenm parts of modern Genmarny

http://dbpedia.org/page/Germany since claseiosl ety A seglon named Germanis wes documented befre 100 AD. Ouing Whe Migration Reriod the G

RUHR
13 Symbolic and Sub-symbolic Representations of Knowledge Graphs - An Introduction UNIVERSITAT R U B
BOCHUM



Wikidata (1/2)

WIKIPEDIA

The Free Encyclopedia

WIKIDATA

Collaborative KG
for Wikipedia

http://wikidata.org/
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Wikidata (2/2)
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How to Represent Knowledge?

- We want to represent the statement “RUB was founded in 19627 in an intuitive way.

subject RUB

predicate founded

[

v Image source: https://commons.wikimedia.org/wiki/File:Ruhr-
Universit%C3%A4t Bochum (IA und weitere |-Geb%C3%A4ude).ijpg
object 1962

intuitive knowledge representation with a directed graph

RUHR
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Triple-based Model for Knowledge Graphs

A knowledge graph is a labelled multidigraph (V, E).

Edges are represented as s 5 o or as triples (s,p, 0), with s,0 € V and p € E, where

s is called the subject or head
p is called the predicate or relation
o is called the object or tail

A knowledge graph KG is a set of statements of the form (s, p, 0), where s and o
correspond to labelled nodes, and p corresponds to a labelled, directed edge.

RUHR
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Example

Visual representation

Analgesics

Protein
Activator

treatment

Acadesine

Triple-based representation: oo ) ) .
(Acadesine, is_a, ProteinActivator) What is “is_a"?

(Acade§1ne, .tr‘eatmer.lt, Leukemia) What is “Drug’?
(ProteinActivator, is_a, Drug)
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Semantics in Knowledge Graphs

Analgesics O
Protein - X Vs l
Activator SN,

\
Acadesine

- Concepts and properties are defined in a vocabulary or ontology (semantics)
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Vocabularies and Ontologies in Knowledge Graphs

Analgesics

domain

treatment

Activator

Disease treatment

Acadesine

|
|
|
|
|
|
|
|
Protein -
|
|
|
|
|
|
|
I

Individual statements

Ontological statements

Ontologies define the formal meaning of the symbols/labels used in the knowledge graph.

RUHR
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Vocabularies and Ontologies

Set of schema-level terms or identifiers (classes and properties) and possibly
instance-level identifiers (individuals), together with additional information.

Represent agreement between people on the definition and meaning of the terms.
In general, vocabularies and ontologies include the following definitions:

(Named) Individuals:
Atomic unit in the vocabulary.

Classes:
Set of individuals; a vocabulary includes the characteristics of classes.

Properties:
Specification of properties and the characteristics of these properties.

RUHR
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Vocabularies and Ontolologies in the Semantic Web

Web Ontology Language (OWL) ——» Complex knowledge

Hierarchies of classes and properties

v

RDF Schema (RDFS)

Definition of properties

v

Resource Description Framework (RDF)

RUHR
UNIVERSITAT
BOCHUM
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RDF Vocabulary

The RDF' vocabulary contains identifiers (URIs) with defined meaning.

The predicate rdf:type associates individuals with classes (this is the is_a relation).
:Berlin rdf:type :City .

We can also define predicates using the class rdf:Property.
:population rdf:type rdf:Property .

1 hitp://www.w3.0rg/1999/02/22-rdf-syntax-ns
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RDFS Vocabulary

The RDFS' (RDF Schema) vocabulary allows for defining classes and hierarchies.

Classes can be declared using the pre-defined class rdfs:Class.
:Person rdf:type rdfs:Class .

Hierarchies of classes can be created with the predicate rdfs:subClassOf.
:Student rdfs:subClassOf :Person .

Hierarchies of predicates can be created with the predicate rdfs:subPropertyOf.
:hasMother rdfs:subPropertyOf :hasParent .

" hitp://www.w3.0rg/2000/01/rdf-schemat

RUHR
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The Web Ontology Language (OWL)
- An ontology language that relies on the RDF model.
Formal logics with a computational character are always a compromise between

expressivity and implementability.

OWL comes in different fragments which balance the user's expressivity needs with
its implementability.

OWL-Lite OWL-DL OWL-Full

)

Implementability Expressivity

RUHR
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OWL DL

We will focus on the OWL DL language

Like RDFS, OWL has the concepts of class, property and instance.
OWL is made up of terms which provide for:

Class axioms

Property axioms This tutorial
Individual axioms

Class construction

Property construction

RUHR
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OWL DL Class Axioms

Equivalent relationship (classes have the same individuals).

Example: Every human is a person, and every person is a human.
:Human owl:equivalentClass :Person
:Alice rdf:type :Human
:Alice rdf:type :Person

Disjointness (classes have no shared individuals).

Example: Cats are not dogs.
:Cat owl:disjointWith :Dog .

RUHR
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OWL DL Property Axioms

Apart from the sub-property relationship from RDFS, OWL also allows for expressing other types
of property axioms.

/_° Equivalent properties (owl:equivalentProperty)
» Inverse properties (owl:inverse0Of)

OWL DL Property Axioms '< - Transitive property (owl:TransitiveProperty)

« Symmetric property (owl:SymmetricProperty)

* Functional property (owl:FunctionalProperty)

* Inverse functional property
(owl:InverseFunctionalProperty)

RUHR
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Individual Axioms

OWL Individuals represent instances of classes

We can explicitly state that two individuals are the same.
dbr:Germany owl:sameAs wikidata:Q183

We can explicitly state that two individuals are different.

dbr:Germany owl:differentFrom dbr:German_Empire .

31 Symbolic and Sub-symbolic Representations of Knowledge Graphs - An Introduction
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What can we do with this type of semantics?

Entailment Reasoning

RUHR
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Entailment

Logical consequence (also entailment) is a fundamental
concept in logic, which describes the relationship between
statements that hold true when one statement logically
follows from one or more statements.

https://en.wikipedia.org/wiki/Logical consequence

RUHR
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Entailment over RDF Graphs: Example

G: E:
dbo:Satellite dbo:Satellite
rdfs:subClassOf rdf:type rdfs:subClassOf
dbo:ArtificialSatellite dbo:ArtificialSatellite
rdf:type rdf:type
dbpedia:Sputnik_1 dbpedia:Sputnik_1

Does G entail E?

Yes, under RDFS entailment, i.e., G Egpps E .

RUHR
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Entailment over RDF Graphs

* Agraph G entails another graph E (denoted G = E), if there is a logical consequence
from G to E.

* Iftwo graphs G and E each entail the other (G £ E and E & G) then they are logically
equivalent.

* Logical consequence is defined via entailment relations.

RUHR
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Entaillment Relations

Entailment relations over RDF graphs are defined as a set of:

* Axiomatic triples:
A self-evident or universally recognized truth
Hold true for all RDF graphs

* Entailment Rules:
Define what statements can logically follow
Formally defined as B — H, where
* B s the rule body or antecedent
* His the rule head of consequent

RUHR
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Entailment Patterns

* Are used to specify entailment rules in RDF graphs.

e Example:

Body ?X rdfs:subClassOf ?y .?y rdfs:subClassOf ?z . dfsii Name of
rajs

Head ?X rdfs:subClassOf 2z . the rule

RUHR
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Applying Entailment Patterns

Statements:
:Student rdfs:subClassOf foaf:Person .
foaf:Person rdfs:subClassOf foaf:Agent .

Entailment pattern:

?X rdfs:subClassOf ?y .?y rdfs:subClassOf ?z .
?X rdfs:subClassOf ?z .

rdfsll

Entailed triple:
:Student rdfs:subClassOf foaf:Agent .

RUHR
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List of RDF/S Entailment Patterns (Selection)

Body (If)

Head (Then)

rdfs5

rdfs6

rdfs7

rdfs9

rdfs10

rdfs11

rdf1

?X rdfs:subPropertyOf ?y . ?y rdfs:subPropertyOf ?z .

?X rdf:type rdf:Property .

?p2 rdfs:subPropertyOf ?pl . ?x ?p2 ?y.

?X rdfs:subClassOf ?y . ?z rdf:type ?x .

?X rdf:type rdfs:Class .

?X rdfs:subClassOf ?y . ?y rdfs:subClassOf ?z .

?’s ?p ?0 .

?X
?X
?X
?z
?X
?X

’p

rdfs:subProperty0Of ?z .
rdfs:subProperty0f ?x .
’pl Py .

rdf:type ?y .
rdfs:subClassOf ?x .
rdfs:subClassOf ?z .

rdf:type rdf:Property .

Full list: https://www.w3.org/TR/rdf11-mt/#patterns-of-rdfs-entailment-informative
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List of OWL Entailment Patterns (Selection)

Body (If)

Head (Then)

eq-sym
eq-rep-s
prp-eqp
prp-inv1
prp-symp
prp-fp

prp-if

scm-eqc1

scm-eqc2

cax-eqc1

?X owl:sameAs ?y .

?s owl:sameAs ?so . ?s ?p ?0 .

?pl owl:equivalentProperty ?p2 .

?pl owl:inverseOf ?p2 . ?x ?pl

?p rdf:type owl:SymmetricProperty . ?x ?p ?y .

’X pl ?y .

Yy .

?p rdf:type owl:FunctionalProperty .

’X ?p ?yl . ?Xx ?p ?y2 .

?’p rdf:type owl:InverseFunctionalProperty .

’X1 ?Pp Py . X2 ?p ?y .

?cl owl:equivalentClass ?c2 .

?cl rdfs:subClassOf ?c2 . ?c2 rdfs:subClassOf ?cl .

?cl owl:equivalentClass ?c2 .

?X rdf:type ?cl .

?y owl:sameAs ?x .
?so ?p 70 .

’X ?p2 ?y .

Py ?p2 ?X .
Py ?’p ?X .

?yl owl:sameAs ?y2 .

?X1 owl:sameAs ?x2 .

?cl rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?cl .

?cl owl:equivalentClass ?c2 .

?X rdf:type ?c2 .

Full list: https://www.w3.org/TR/owl2-profiles/#Reasoning in OWL 2 RL and RDF Graphs using Rules
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Deductive Reasoning

Formal manipulation of symbols representing a collection of propositions to produce
representations of new propositions.

Classical example:

Proposition :Man rdfs:subClassOf :Mortal

Proposition :Socrates rdf:type :Man
New proposition :Socrates rdf:type :Mortal
using rdfs9 Photo from Wikipedia

In RDF Graphs, we perform reasoning by computing new RDF triples from the consequent of
rules, using the defined entailment relations.

RUHR
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Knowledge Graph Representations

Rk
dbr:Acadesine
f t
is_a = Analgesics 4& @f \)\Nﬂz & Oral
' Mexiletine dbr:Leukemia
routef/' Intravenous
Protein #;‘L““’// ’
Activator Ho o N M
by treatment, dbo:Drug
Acadesine Leukemia
dbp:route
E—
Symbolic Representation Sub-Symbolic Representation
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Sub-Symbolic Representations for KGs
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Sub-Symbolic Representations for KGs
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Sub-Symbolic Representations for KGs

0 vy B Wy

thrinde R e

"
12 Ore e Todyw
.
as ‘/
e Mo Deby

" e boyrg
e
-~ 2 ]
‘ a"
a1 ®r bsia
-
F [T Y FERE T
"
145 drfeonie
2 ® ot Garrary
-
" - nwy e . .
” . Allow for uncovering hidden
P | dtome patterns / associations

RUHR
46 Symbolic and Sub-symbolic Representations of Knowledge Graphs - An Introduction UNIVERSITAT R U B
BOCHUM



Knowledge Graph Embeddings

KG embeddings represent entities (and relations) in a vector space.

Embeddings can be computed with different representation learning methods:

Optimd Training
Rk‘
J _Y '; """""" Downstream Tasks
. — . (Lirk Prochetion)
- ), o Lockup Scoring Layer Less
' " Fumctions
et M L Layer fispoleR P .
¥ , [(s,po)ER
- s (T
Negatives Generation
Inference
Symbolic Representation Representation Learning Sub-symbolic Representation

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAIl 2020.
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Knowledge Graph Embedding Models

Some KGE models in recent published literature:

ComplEx HolE

ComplEx-N3
(Lacroix et al., 2018)

TranskE
(Bordes et al., 2013) (Trouillon et al., 2016) (Nickel et al., 2016)
O O O Oo—O0 O O O >
RESCAL DistMult ConvE RotatE
(Dettmers et al., 2017) (Sun et al., 2019)

(Nickel et al., 2011) (Yang et al., 2014)

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAIl 2020.
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Scoring Function

- Assigns a score to a triple t = (s, p, 0).

High score = high chance that the triple t is true.

- Different types of scoring functions for KG embedding models:

Translation-based scoring functions
Factorization-based scoring functions
“Deeper” scoring functions

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAI 2020.
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Translation Based Scoring Function

TransE: computes a similarity between the embedding of the subject e, translated by the
embedding of the predicate r, and the embedding of the object ¢,, using the L; or L, norm:

rp
frranse = — “(eS T 7 ) — eOHn nf (',,'
[Bordes et al. 2013]
RotatE: relations modelled as rotations in a complex space. p S r,
frRotate = — ”(eso Ty ) — eo”n | L
e;Irp—e,
[Sun et al. 2019] \Je:

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAI 2020.
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Factorization-based Scoring Function

Rescal: low-rank factorization with tensor product. j-th entity
k‘ll'ii{!'l ol 1 ; ' m:l;:!\‘ [ éi]lllull}
'IGQIiSCL4l' = ‘321‘1,3‘63() thﬂ:m’w | . N " 3~
[Nickel et al. 2013] Jth

relation

DistMult: bilinear diagonal model. Dot product.

[pistMuit = (rp» €s, eO)
[Yang et al. 2015]

ComplEx: Complex embeddings. Extends DistMult with dot products in a complex space.

fcompiex = Re((rp; €s, e_o>)
[Trouillon et al. 2015]

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAI 2020.
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“Deeper” Scoring Functions
ConvE: reshaping + convolution.
feonve = (0 (vec (g([e_s: 7?9] * -Q)) W) €o)
\\\\\\\\\\‘

[Dettmers et al. 2017]
2D reshaping

- ConvKB: convolutions and dot product.
fconvkg = concat(g([es,rp, eo]) * Q) - W

[Nguyen et al. 2018]

Computationally expensive!

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAI 2020.
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Loss Function

Pairwise Margin-based Hinge Loss: Pays a penalty if the score of a positive triple is
smaller than the score of a negative (synthetic) triple by margin y.

L(0) Z Z max(0, [y

ttegt—ecC

[Bordes et al. 2013]

Score assigned to a Score assigned to a
synthetic negative true triple

Negative Log-likelihood / Cross Entropy:
[Trouillon et al. 2016]

£(O) ), log(1+exp(=y f(:0))

te guC ) 0 denotes the parameters of
Label of the triple y € {—1,1} the corresponding model

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAI 2020.
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Negative Generation

Knowledge Graphs only contain positive statements (true statements).

Where do negative examples (i.e., false statements) come from?
Synthetic Negative Generation

Local Closed World Assumption: the KG is only locally complete.

“Corrupted” versions of a triple as synthetic negatives:

C=18,p,0)|Is €EFU{(s,p,0)|0 € E}

Example:
Negatives
€ = {Mike, Liverpool, Acmelnc, George, LiverpoolFC} (Mike, bornin, Acmelnc)
R = {bornin, friendWith} (Mike, bornin, LiverpoolFC)
t € G = (Mike bornin Liverpool) (George, bornin, Liverpool)

RUHR
54 Symbolic and Sub-symbolic Representations of Knowledge Graphs - An Introduction UNIVERSITAT R U B
BOCHUM



Knowledge Graph Embeddings: Considerations
Explainability
It is not straightforward to understand the predictions done with sub-symbolic representations.

This aspect is crucial in sensitive/critical use cases.

Unreliability

Predictions using sub-symbolic representations are not based on logic (unlike reasoning).

Randomness
Most representation learning techniques include random components.

We can obtain (very) different embeddings for the same KG using the same representation
learning approach.

RUHR
55 Symbolic and Sub-symbolic Representations of Knowledge Graphs - An Introduction UNIVERSITAT R U B
BOCHUM



Applications of Knowledge Graph Embeddings

Knowledge Graph

Completion Semantic Similarity Entity Matching

-----------------------
worksFor City
worksFor likes —’O‘LA_,
/ ) Liverpool FC O

nnnnn

Guinness

friendWith Mike FootballTeam

p
<:>_——_“EA

George

Person

(and more)
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2. Symbolic Representations of Knowledge Graphs

3.  Sub-Symbolic Representations of Knowledge Graphs
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Knowledge Graph Completion Tasks

Task Assumption | Example Result
Triple Classification CWA (MarieCurie, occupation, Chemist) | (True, 0.95)
Tail Prediction CWA (MarieCurie, occupation, ?) 1, Chemist, 0.95)

(

(2, Physicist, 0.92)
Head Prediction CWA (?, occupation, Chemist) (1, MarieCurie, 0.91)

(

(

2, PierreCurie, 0.89)

Relation Prediction CWA (MarieCurie, ?, PierreCurie) 1, spouse, 0.90)
Entity Classification / CWA (MarieCurie, is_a, ?) (1, Person, 0.92)
Type Prediction (2, Scientist, 0.87)
Missing Relation OWA (MarieCurie, ?, X) (birthPlace, 0.98)
Prediction X = existential variable (awards, 0.80)
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Type Prediction with Machine Learning

— Type prediction

» Type prediction

— Type prediction

<entity types> .
g Classifier
/ (Supervised)
HHHHHHHHHH EEEEEEN
' Inference
Represer]tatlon ,,,,,,,,,,, EEEEEEN
Learning ® I
KG Dﬂ‘ Unsupervised
embeddings Learning
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State-of-the-art: Type Prediction

Results: Type prediction is a difficult task for current KG embeddings. [Jain et al. 2021]

Lovet ] . L B
e >X BIPS L . . .- . Embedding
. Compit x
Laved 2 Persors o . - » ®0tx = . L ONyt
. . Dt
& Lev Waterbod 4 < . e ve %t e RDF2Ve
f . RESCAL
A eved- 3 Artist o . O XX X9 o SOToe
s:. . Transt
cve Players $ -nd " Classifier
® KNN
Level 3.5 st = “e ® s xe = » - NLP
. Random forest
L JWRer e nh nn ‘ I e SDVyee
! 4 o a0
F1-Mcasure
F1 measure for Yago3-10 classification experiments
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Our Approach: Ridle
Type Prediction



Our Approach: Ridle

Idea: Similar entities have a similar distribution of used relations.

Estimate the unknown relation distribution by using a Restricted Boltzman Machine (RBM).

1953-12-08 country 1938-01-10

United States 17 birthdate 17
birthdate birthdate 1 [ birthplace 1
leaderName
0 | almaMater 1
birthPlace (& Oponaid knuth = |0 |award Orom Barrett = |1
) 1 [ knownFor 0
Tom Barrett Milwaukee Donald Knuth O author 0
birthPlace knownFor author (Ol leaderN 0
()1 leaderName -U-
award .
The Art of Computer Programming
Distinguished University of Wisconsin—-Madison
Flying Cross
RUHR
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Our Approach: Ridle

(0.70 ]

\

o(wvy + by), | ho~B(p) ho

Oponald knuth =

0.25

p(hg = 1|vy)

/

0.40

Vg P(hy|vy)
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Our Approach: Ridle

Potential missing relation for the

entity Donald Knuth -

1 birthdate
r 3 birthplace
1 0.70 P 1
0 » almaMater
ODonald Knuth — 0 0.25 award 0
1 knownFor
0.40 1
0 . ’ author
0 leaderName
h
Vo P(hy|vy) 0
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Ridle: Type Prediction

Hypothesis: Entities with similar relation distribution typically belong to the same classes.

Use the hidden layer of the RBM to train a neural network for predicting entitiy classes.

Representation Classifier
Learning (Supervised)
dirthgioce | 1 |(
sirtndore | 1 [ 0.80|() 5
et 0 | OQITIA - i
0.07 (= X\ Y
n ( — M Y 4
ot & ) "~~~ €ponald Knuth = ) Y: KO (014 o
olmaMoter| 1 [ ) 0.24 l:\KT',}*‘l'.\‘/r:K,:?))I
). 0. S\ P
country | 0 | (T J/‘(\‘x l't ¥ )|0.08) Book
092 | OF—¥ F g '
ieoderName | () GELUl SlngId
P(hg|ve)
vo Entity Embedding
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Experimental Results

Fl-Macro Fl-Miro
KG Ridle | SDType RDF2Vec RESCAL ImtE  TransE Ridle | SDType RDF2Vec RESCAL ImtE  TransE
DBp_3.% S02.01 224402 331202 370201 098201 376201 | .9652.00].662+.01 000200 688200 002400 T162.00
DBp 2016-04 B46201 [.222+4.01 209202 517202 (188402 371402 ] 96800 [.595+£.01 000200 624200 00000 715200
WD _2017-03-13] 805201 [.1152.01 774201 784201 784201 .779+.01 590401 1563201 000200 751200 752200 .801%.00
YAGOM T274.01 |L05S6£.00 4695202 625201 657201 621401 ] 965400 |.8333+£.00 645200 889+ 00 725400 590+ 00

Ricio on DB 201604

fudle on WD _2017-03-13

Kade on TAGOA
- :.'{
Lo -
Mrare. N
L R Y AS
e -r
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Summary

- Knowledge Graphs allow for representing interconnected statements.

* Form a directed-labeled graph.

is a route
Analgesics N e é/\o\)\wz > Oral

- Symbolic Representations of KGs:

Mexiletine

« Triple-based model (s,p,0). route

Intravenous

Protein

+ Ontologies with different expressivity: - Acivator

ot treatment

Leukemia

* RDF: definition of properties. Aoedeshe
* RDFS: classes, hierarchies of classes and properties.
OWL: complex knowledge.

« Suitable for entailment and reasoning.
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Summary

Sub-symbolic Representations of KGs:
Knowledge Graph embeddings.

Computed with Representation Learning approaches:

« Score function: chances that a true triple belongs to the KG.

* Loss function: takes into account the score function.
« Synthetic negative generation.

* Optimization: off-the-shelf SGD variants.

Suitable for knowledge graph completion.

Current limitations: expressivity and explainability.
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Open Research Problems

More Expressive Models Multimodal Support Beyond Link Prediction
Capture KG regularities and Node and edge attributes, Multi-path predictions, complex
dependencies while keeping different forms of embeddings, patterns.
runtime/space complexity low. time-awareness, uncertainty.

Better Benchmarks Robustness & Interpretability Neuro-Symbolic Integration
Fair evaluation protocols, Techniques to dissect, investigate, Integrate KGE and entailment
novel datasets, including explain, and protect from adversarial regimes to get the best of both
negative predictions. attacks. worlds.

Slide source: Costabello, et al. Tutorial: Knowledge Graph Embeddings: From Theory to Practice. ECAI 2020.
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Future Work

Sub-symbolic Neuro-symbolic Symbolic
Representation KG Management Representation
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Thank you!
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Twitter: @maribelacosta



