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Tutorial Structure

* Part1: Introduction
* Part 2: Methods of Explainable Al (XAl)

* Part 3: Extensions and Applications
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Part 1: Introduction

* Components of XAl (model, explanation, user)
* Practical motivations
* Desiderata of an explanation system

* Types of explanations
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Explainable Al System
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Goals: Expose the decision strategy of the ML model to the user, in order
to get insights from the model, confront the explanation with the user’s
own domain knowledge, and possibly correct model flaws.
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Components of an XAl System

* The ML model

— Generalizes user knowledge (in the
form of human labeling) to new data Interpretable ML

points. Compared to the human, a ML ig&iﬁ'ﬁﬁgt
model is faster, less costly, and . <
sometimes more accurate. “ q=
=
* Theexplanation g
— Transformation of the prediction S -
strategy implemented by the ML ML | interpre- | | &
model into something informative and model | SNEADINEA JS
intelligible for the human. - B
* Theuser Y

verified predictions
— User possesses expert knowledge, i

that is sometimes not integrated in the
model (due to small dataset, or flawed
training).
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Example of an Explanation

ML

class: . g

viaduct

Pixels that are relevant for the model to classify the input image into a particular
class (here viaduct) are highlighted in red.

Note: Explanation reveals the decision strategy of the model, not necessarily the
actual object in the image.
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Why Explainable Al? Practical Motivations

* Trustworthy Al

— XAl is used to further validate the learned ML model (in order to verify that it
implements the correct decision strategy and generalizes well).

* Generating Scientific Insights

— XAl is used in combination with ML to identify the relation between different
variables in some complex system of scientific interest (e.g. a molecular
system or a biological cell).

* CompliantAl

— Explanations of Al decision (and valid explanation) is required (e.g. by law) to
deploy an Al system and let the Al system take decisions.

 Actionable Al

— XAl is used in combination with ML to characterize the input-output
behavior of a complex system so that the latter can be actioned in a
meaningful manner.

.'E G. Montavon DataNinja Summer School, Explainable Al 7/52



Motivations: XAl for Trust

1/

Pascal VOC 2007 dataset: Fisher Vector Classifier vs. DeepNet pretrained on ImageNet

aeroplane bicycle bird boat bottle bus car
Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%
DeepNet 88.08% 79.69% 80.77% 77.20% 35.48% 72.71% 86.30%
cat chair cow diningtable dog |/ horse motorbike

Fisher 59.92% 51.92% 47.60% 58.06% 42.28% 80.45% 69.34%

DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% |\_ 81.60% 79.33%
person pottedplant sheep sofa train tvmonitor mAP

Fisher 85.10% 28.62% 49.58% 49.31% 82.71% 54.33% 59.99%

DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%
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Motivations: XAl for Trust

1/

Pascal VOC 2007 dataset: Fisher Vector Classifier vs. DeepNet pretrained on ImageNet

aeroplane bicycle bird boat bottle bus car
Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%
DeepNet 88.08% 79.69% 80.77% 77.20% 35.48% 72.71% 86.30%
cat chair cow diningtable dog |/ horse motorbike

Fisher 59.92% 51.92% 47.60% 58.06% 42.28% 80.45% 69.34%
DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% \_ 81.60% 79.33%
person pottedplant | sheep sofa train tvmonitor mAP

Fisher 85.10% 28.62% 49.58% 49.31% 82.71% 54.33% 59.99%
DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%

Fisher classifier

Lapuschkin et al. 2016. Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
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Motivations: XAl for Trust

‘horse’ images in PASCAL VOC 2007

““_*

C Lothar Le “I .

WWW. pferlfotoarcfw de

C: Lothar Lenz
www.pferdefotoarchiv.de

cn.ml.q‘nz

wwwp|mnoa chivde
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Motivations: XAl for Trust

Because the classifier relies on a non-informative feature
(the copyright tag), it can be easily fooled.

Examples:

esamm > | ~HORSE

Clever Hans models are unlikely to perform well on future data.
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Motivations: XAl for Scientific Insights

Example: What atoms or regions of the molecule contribute most
strongly to the atomization energy of a molecule.
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Motivations: XAl for Compliant Al

* Art13. GDPR (excerpt)

.. In addition to the information referred to in paragraph 1, the controller shall, at
the time when personal data are obtained, provide the data subject with the
following further information necessary to ensure fair and transparent processing:

- [.]

— the existence of automated decision-making, including profiling, referred to in
Article 22(1) and (4) and, at least in those cases, meaningful information about
the logic involved, as well as the significance and the envisaged consequences

of such processing for the data subject.

- [..]

* Question: Are XAl outputs ‘compatible’ with what is required by law?
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Desiderata of an Explanation System

1. Fidelity: The explanation should reflect the quantity being
explained and not something else.

2. Understandability: The explanation must be easily
understandable by its receiver.

3. Sufficiency: The explanation should provide sufficient
information on how the model came up with its prediction.

4. Low QOverhead: The explanation should not cause the
prediction model to become less accurate or less efficient.

5. Runtime Efficiency: Explanations should be computable in
reasonable time.

(cf. Swartout & Moore 1993 [13])
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Desiderata: Fidelity (Faithfulness)

XAl System
ML
(VGG:16)
class:
viaduct
Testing
Faithfulness
relevant
features océluda
H.

¢
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Types of Explanation

* Mechanistic vs. Functional

—  What do we want to explain about the model: how it is designed, or how it
behaves?

* Feature Set or Feature Scoring

— Are we interested in extracting a set of relevant features, or finding the exact
contribution of each feature?

* Localvs.Global

- Are we interested in explaining a particular prediction (e.g. for a given
image), or the behavior of the model on a whole dataset / input domain?
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Types of Explanations: Mechanistic vs. Functional

\
O
f:R* >R
J
Mechanistic: Understanding Functional: Understanding how
what mechanism the network the network relates the input to
uses to solve a problem or the output variables.

implement a function.
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Types of Explanations: Local vs. Global

Global: What features are Local: What features are relevant
relevant in order to produce a for a given data point.
positive response f(x) in general.
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Types of Explanations: From Local to Global

N1}

Step1: Compute an explanation for

R h every example in the dataset.

G. Montavon DataNinja Summer School, Explainable Al

Lapuschkin et al. (2019)
Unmasking Clever Hans Predictors
and Assessing What Machines
Really Learn
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Types of Explanations: From Local to Global

Step 2: Organize explanations into clusters.

Clever Hans effects are now obtained systematically.

Lapuschkin et al. (2019)
Unmasking Clever Hans Predictors
and Assessing What Machines

Really Learn
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Part 2: Methods

* The problem of attribution

* XAl methods for attribution
— Shapley Value
— Gradient x Input (Gl)

— Layer-wise Relevance Propagation (LRP)

* Theoretical properties
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The Problem of Attribution

Attribution: Determining the contribution of each input
features to the score predicted at the output of the model,
e.g. what percentage of the function output is explained by a
particular input feature.

input . R,

....

Decomposition property: f(x1,...,xq) = >0, R
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Categories of Attribution Methods

* Perturbation-Based
- Shapley Value
—  Occlusion
* Gradient-Based
— Gradient x Input (Gl)
-  SmoothGrad
- Integrated Gradients
* Propagation-Based
— Guided Backprop

— Layer-wise Relevance Propagation (LRP)

* Additive Surrogates Models
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Shapley Values

» Framework originally proposed in
the context of game theory
(Shapley 1951) for assigning
payoffs in a cooperative game,
and recently applied to ML
models.

» Each input variable is viewed as a
player, and the function output as
the profit realized by the
cooperating players.

The Shapley values ¢4, ..., ¢4 measuring the contribution of each fea-
ture are:
S|I(d—|S|—1)!
b=y PHERE [f(xsup) — f(xs)]
S:i¢gS

where (xs)s are all possible subsets of features contained in the input
X.
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Shapley Values

Recall:  ¢; = Z lS“(d_dl!Sl_l)! [f(xsu{f}) - f(xs)}

S: ¢S ~~ ~~ g
¢ asg Asg

Worked-through example: Consider the function f(x) = x; - (x + x3).
Calculate the contribution of each feature to the prediction f(1) =1 -

(1+1)=2.
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Gradient x Input

A feature is contributing to the prediction if (1) and (2) the feature
is activated. The Gradient x Input method [1]:

‘;Df: * Xi

implements this idea and it can be computed quickly in one forward/backward pass.

Proposition: When f is a deep Rel. U network (without bias), i.e. when

f(x) =p(Wep(. .. p(W:ix)))

then, Gradient x Input satisfies > . ¢; = f(x).
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Gradient x Input in Practice

Example: Gradient x Input explanation of the VGG-16 neural network output neuron ‘viaduct'
for a given input image:

Observation: There is an exceedingly large amount of positive (red) and negative (blue) scores.
Explanations also appear noisy and are hard to interpret.
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Problem: Gradients are ‘Shattered’

» We look at the DNN output (and its
gradient) along some trajectory in
the input space, e.g. an athlete
lifting a barebell.

» The function Is relatively stable, but
the gradient strongly oscillates and
appears noisy (cf. [3]).
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Shattered Gradients: A Construction

Consider the function: g(x)
g(x) =2-RelLU(x) — 4 -ReLU(x —0.5) Ly

defined on the interval [0, 1].

We apply the function recursively to form a deep neural network.

A
5

function output max slope £ linear pieces

g(x) [0.1] 2 2

gog(x) [0.1] 4 4
gogog(x) [0,1] 8 8
gogogog(x) [0,1] 16 16

Potentially exponential growth of gradient and linear pieces (cf. [11]).
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From Function-Based to Propagation-Based

) SO
R O OO

KA
KKK
XXX XXX
XX
XA AAI AT

Questions:

» Can using the structure of the network explicitly (e.g. by running a special propagation
pass) help to produce a better explanation?

» Can this approach reduce explanation noise without having to evaluate the function
multiple times?
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Layer-wise Relevance Propagation (LRP)

% R, . B
" f *, 8 N\ 5 Ideas:
ﬁ N 8 : g \ . » Use the structure of the neural network
ﬁ 7 0 i to rqbustly compute relevance scores for
o 8 o the input features.
L ﬁ O » Propagate the output of the network

backwards by means of propagation rules.

{Box KRy (L RPe K LRP0. <

. | » Propagation rules can be tuned for
i i e ok B 1. § 4 o F
: TR D DS syt L explanation quality. E.g. sensitive In

B = Xk s ara Lok top-layers, robust in lower layers.

g (wip+yw t )
Rj = Zi- = AWk ik Ry

-‘.
g 0 (Win+yw i)
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Layer-wise Relevance Propagation (LRP)

R,
I
- 7 0\ Some notation:
,’ o
/ f . D | | ,
D} 5 o) » ; and k: neurons from successive layers
w» O Q
j/ ﬁ 4 g O > wj,: weight connecting neuron J to
7/ o C neuron K
. O :
V Q » wy: bias for neuron k.

{ Box KL RPy < RPe < LRP0 > Zo,j sum over all input neurons j of
5 i, neuron k and the bias.
| 1 k 05,

R, =Y, HZ f}_,.”-}.r. Ry, » RelLU neuron: ax = max (0, >0, ajWik).

g (g +yw .|p)

Kl
R - Z.ﬁ. Z“J =5 (t +"r'ff'_;.J Rf\.
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Dissecting an LRP Propagation Rule

Example: LRP-y [9]

R; R
/;; ek &
' "'w-. < aj(wjk +ywjy)
7 Ri=3 R,
]
& A i > ai(wik +’m3-;<): Contribution of neuron a; to the
/] activation ag.
V

» R, ‘Relevance’ of neuron k available for redistribution.

Ry KK

: > Normalization term that
! Implements conservation.

N » > ,: Pool all ‘relevance’ received by neuron j from the
b= Yyt Yl layer above
: k E“l_. c!_f-(u'_jk—l—-j.r-u:}k} y -

T
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Dissecting an LRP Propagation Rule

/jfj Rﬂ—k Rk
- ﬁ Example: LRP-y [9]
/ ~ f
7 ﬁ ( Z (Wjk + YW )
ﬁ ZOJ’ aj Wik pic g k)
A »
*,
4 g » 4o, : Activation of neuron j.

L ey L K > (>, ...): Sensitivity of neural network output to a;.
: I.e. similar interpretation as for Gradient x Input, but now at
each layer.

R _ ZI‘\ a; (1 J"+""”J-k

k
._-n’fj jU‘J(UJ’J +yw JA}
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Effect of LRP Rules on Explanation

At h : VGG-16 Network
3 (88 BR8] [5|5]|5] |&]|5]|E lE
g @He—eHeHe—eHede—ae@He@He afla
¢ B 4 LRP-0 |
- LRP-¢ |
| g < LRP-y < LRP-¢ { LRP0 |
N
.]"-.
rlEﬂ '.“‘(‘.I

each layer (cf. [9] for heuristics).

G. Montavon

DataNinja Summer School, Explainable Al

LRP rules must be chosen carefully to deliver best expla-
nation quality. Generally, LRP rules are set different at
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Part 3: Extensions and Applications

* Application to Anomaly Detection

= Unsupervised XAl

* Applications to Quantum Chemistry

— Higher-Order Explanations

.'E G. Montavon DataNinja Summer School, Explainable Al 36/52



Anomaly Detection for Industrial Inspection

MV Tec Anomaly Dataset

» In many cases we don't have labels that are representative of every possible
anomaly. Therefore, we need unsupervised learning.

» Deep networks have been successful on supervised tasks, but other models such as
kernels remain popular on unsupervised tasks.
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Example: Detecting Anomalous Wood Images

training data test-set anomalies

Kernel Density Estimation (KDE)
N

() =Y+ e(—llx - xil?)

i=1
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Example: Detecting Anomalous Wood Images

training data test-set anomalies

|
{14
ki
b

Kernel Density Estimation (KDE)

N
1
o(x) = —log p_ wexp(=7llx - xil?)
=1
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Neuralizing the KDE Model

Standard (non-explainable) formulation:

N

o(x) = —log ( 3"+ exp(—l1x — xi|P))

=1

‘Neuralized’ formulation:

hi =v|x — x;||*> + log N (layer 1)
o(x) = —log > exp(— hj) (layer 2)

J
softmin T U smin

The KDE model predictions can now be 9
explained with LRP.

Kauffmann et al. (2020) The Clever Hans Effect in Anomaly Detection arXiv:2006.10609
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Explaining an Anomaly Decision

neural-KDE

A

anomalous

Observation:

» Both the liquid stain and the wood grain are found to be responsible for the
predicted anomaly (the wood grain should not!).

Kauffmann et al. (2020) The Clever Hans Effect in Anomaly Detection arXiv:2006.10609
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Correcting the Model Weaknesses

Idea: Replace in the original KDE model the Euclidean metric by a Malahanobis
metric with covariance 2 hardcoded to reduce the high horizontal frequencies.

"1
Z v(x —x;) X(x — x;))

i

(TR {'- L‘ “ 4 '| Modified KDE model 4

» The anomaly decision is now supported by the correct features.
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Neuralization-Propagation as a General Technique

(i) Logistic Classifier  (ii) One-Class SVMs (iii) K-Means

smin L smin

(iv) Kernel K-Means ]
: Linear
smax smin 5 . . Kauffmann et al. (2019):
(DIStance) From Clustering to

; Cluster Explanations via
T smax smin : _
SoftMax (LSE) Neural Networks.

Kauffmann et al. (2020):

smax smin : _ , ar
SoftMin (-LSE(-), Harmonic) Towards explaining

anomalies: A deep Taylor

decomposition of one-
class models.
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Explaining Graph Neural Networks

@ input graph A
i .l, GNN

A H —® —> H, —>® —> H, —>>—> f(A;H))
interaction interaction readout

Schnake et al. (2020) Higher-Order Explanations of
Graph Neural Networks via Relevant Walks
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Explaining Graph Neural Networks

@ input graph A
i ,L GNN

A H —® —> H, —>® —> H, —>>—> f(A;H))
interaction interaction readout

Observations:
- The input A occurs at every layer of the network.

- The function f is piecewise polynomial with /.

Schnake et al. (2020) Higher-Order Explanations of
Graph Neural Networks via Relevant Walks
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Explaining Graph Neural Networks

@ input graph A
i .l, GNN

<> Hy —>©® —> Hi —® —> H, —[>—> f(A;Ho)

interaction interaction readout

Idea:
- First consider input in the last layer, i.e., Y, and attribute on A,

- Then express contribution of each variable in /1Y in terms of the
input A2,

- When we arrive at layer zero, we have identified the contribution of
all paths between nodes at each layer (can be interpreted as walk into
the graph).

Schnake et al. (2020) Higher-Order Explanations of
Graph Neural Networks via Relevant Walks
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Explaining Graph Neural Networks

@ input graph A
i i GNN

@ Hy —®—> H, — ® — H, —’*D—’*\ f(A5H0)
interaction interaction readout
] Q._,_",__.*\,Zf."..‘_, > : . - .é:_;_,.—r-' ; LN : /
i N | = &S T
e | (= L o, - . GNN-LRP

explanation

Schnake et al. (2020) Higher-Order Explanations of
Graph Neural Networks via Relevant Walks
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Explaining Graph Neural Networks

<>

@ input graph A

i GNN

H —&®—> H, —> @ —> H, —>[>— N

interaction interaction readout
3 ,.\“—-_"_'"- : cé%ﬂ : @ r
i N | = &S T
° I, .. ¥ 2 - = - - . - - GNN'LRP
explanation

N1}

Can be interpreted as a higher-
order analysis of the function £

G. Montavon DataNinja Summer School, Explainable Al

f(A;Ho)
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Explaining Molecular Polarizability with GNN-LRP

Example:
Paracetamol
molecule

.'E G. Montavon DataNinja Summer School, Explainable Al
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Our Review Paper

W Samek, G Montavon, S Lapuschkin, C Anders, KR Mller |pmm EEE|
Explaining Deep Neural Networks o S R
and Beyond: A Review of Methods S

and Applications
Proceedings of the IEEE, 109(3):247-278, 2021

With the broader and highly successful usage of machine learning (ML) in industry and
the sciences, there has been a growing demand for explainable artificial intelligence
(XAl). Interpretability and explanation methods for gaining a better understanding of the problem-solving abilities and
strategies of nonlinear ML, in particular, deep neural networks, are, therefore, receiving increased attention. In this
work, we aim to: 1) provide a timely overview of this active emerging field, with a focus on “ post hoc ” explanations,
and explain its theoretical foundations; 2) put interpretability algorithms to a test both from a theory and comparative
evaluation perspective using extensive simulations; 3) outline best practice aspects, i.e., how to best include
interpretation methods into the standard usage of ML; and 4) demonstrate successful usage of XAl in a
representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this
exciting foundational field of ML.
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Check our Website

Www.heatapping.org

Online demos, tutorials, code examples, software, etc.
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