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Tutorial Structure

● Part 1: Introduction
● Part 2: Methods of Explainable AI (XAI)
● Part 3: Extensions and Applications
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Part 1: Introduction

● Components of XAI (model, explanation, user)
● Practical motivations
● Desiderata of an explanation system
● Types of explanations
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Explainable AI System

Goals: Expose the decision strategy of the ML model to the user, in order 
to get insights from the model, confront the explanation with the user’s 
own domain knowledge, and possibly correct model flaws.
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Components of an XAI System

● The ML model
– Generalizes user knowledge (in the 

form of human labeling) to new data 
points. Compared to the human, a ML 
model is faster, less costly, and 
sometimes more accurate.

● The explanation
– Transformation of the prediction 

strategy implemented by the ML 
model into something informative and 
intelligible for the human.

● The user
– User possesses expert knowledge, 

that is sometimes not integrated in the 
model (due to small dataset, or flawed 
training).
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Example of an Explanation

Pixels that are relevant for the model to classify the input image into a particular 
class (here viaduct) are highlighted in red.

Note: Explanation reveals the decision strategy of the model, not necessarily the 
actual object in the image.
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Why Explainable AI? Practical Motivations

● Trustworthy AI
– XAI is used to further validate the learned ML model (in order to verify that it 

implements the correct decision strategy and generalizes well).
● Generating Scientific Insights

– XAI is used in combination with ML to identify the relation between different 
variables in some complex system of scientific interest (e.g. a molecular 
system or a biological cell).

● Compliant AI
– Explanations of AI decision (and valid explanation) is required (e.g. by law) to 

deploy an AI system and let the AI system take decisions.
● Actionable AI

– XAI is used in combination with ML to characterize the input-output 
behavior of a complex system so that the latter can be actioned in a 
meaningful manner.
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Motivations: XAI for Trust

Pascal VOC 2007 dataset: Fisher Vector Classifier vs. DeepNet pretrained on ImageNet
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Motivations: XAI for Trust

Pascal VOC 2007 dataset: Fisher Vector Classifier vs. DeepNet pretrained on ImageNet

Fisher classifier

Lapuschkin et al. 2016. Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
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Motivations: XAI for Trust
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Motivations: XAI for Trust

Not Horse Horse

Because the classifier relies on a non-informative feature 
(the copyright tag), it can be easily fooled.

Examples:

Clever Hans models are unlikely to perform well on future data.
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Motivations: XAI for Scientific Insights

Example: What atoms or regions of the molecule contribute most 
strongly to the atomization energy of a molecule.
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Motivations: XAI for Compliant AI

● Art 13. GDPR (excerpt)

 … In addition to the information referred to in paragraph 1, the controller shall, at 
the time when personal data are obtained, provide the data subject with the 
following further information necessary to ensure fair and transparent processing:
– […]
– the existence of automated decision-making, including profiling, referred to in 

Article 22(1) and (4) and, at least in those cases, meaningful information about 
the logic involved, as well as the significance and the envisaged consequences 
of such processing for the data subject.

– […]

● Question: Are XAI outputs ‘compatible’ with what is required by law?
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Desiderata of an Explanation System
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Desiderata: Fidelity (Faithfulness)
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Types of Explanation

● Mechanistic vs. Functional
– What do we want to explain about the model: how it is designed, or how it 

behaves?
● Feature Set or Feature Scoring

– Are we interested in extracting a set of relevant features, or finding the exact 
contribution of each feature?

● Local vs. Global
– Are we interested in explaining a particular prediction (e.g. for a given 

image), or the behavior of the model on a whole dataset / input domain?
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Types of Explanations: Mechanistic vs. Functional

Mechanistic: Understanding 
what mechanism the network 
uses to solve a problem or 
implement a function.

Functional: Understanding how 
the network relates the input to 
the output variables.
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Types of Explanations: Local vs. Global

Global: What features are 
relevant in order to produce a 
positive response f(x) in general.

Local: What features are relevant 
for a given data point.
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Types of Explanations: From Local to Global

Step 1:  Compute an explanation for 
every example in the dataset.

Lapuschkin et al. (2019) 
Unmasking Clever Hans Predictors 
and Assessing What Machines 
Really Learn
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Types of Explanations: From Local to Global

Step 2:  Organize explanations into clusters.

Clever Hans effects are now obtained systematically.

Lapuschkin et al. (2019) 
Unmasking Clever Hans Predictors 
and Assessing What Machines 
Really Learn
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Part 2: Methods

● The problem of attribution
● XAI methods for attribution

– Shapley Value
– Gradient x Input (GI)
– Layer-wise Relevance Propagation (LRP)

● Theoretical properties



22/52G. Montavon   DataNinja Summer School, Explainable AI

The Problem of Attribution

Attribution: Determining the contribution of each input 
features to the score predicted at the output of the model, 
e.g. what percentage of the function output is explained by a 
particular input feature.
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Categories of Attribution Methods

● Perturbation-Based
– Shapley Value
– Occlusion

● Gradient-Based
– Gradient x Input (GI)
– SmoothGrad
– Integrated Gradients

● Propagation-Based
– Guided Backprop
– Layer-wise Relevance Propagation (LRP)

● Additive Surrogates Models
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Shapley Values
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Shapley Values
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Gradient x Input
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Gradient x Input in Practice
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Problem: Gradients are ‘Shattered’
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Shattered Gradients: A Construction
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From Function-Based to Propagation-Based
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Layer-wise Relevance Propagation (LRP)
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Layer-wise Relevance Propagation (LRP)
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Dissecting an LRP Propagation Rule
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Dissecting an LRP Propagation Rule
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Effect of LRP Rules on Explanation
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Part 3: Extensions and Applications

● Application to Anomaly Detection
– Unsupervised XAI

● Applications to Quantum Chemistry
– Higher-Order Explanations
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Anomaly Detection for Industrial Inspection
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Example: Detecting Anomalous Wood Images
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Example: Detecting Anomalous Wood Images
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Neuralizing the KDE Model
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Explaining an Anomaly Decision
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Correcting the Model Weaknesses
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Neuralization-Propagation as a General Technique

Kauffmann et al. (2019): 
From Clustering to 
Cluster Explanations via 
Neural Networks.
Kauffmann et al. (2020): 
Towards explaining 
anomalies: A deep Taylor 
decomposition of one-
class models.



44/52G. Montavon   DataNinja Summer School, Explainable AI

Explaining Graph Neural Networks

Schnake et al. (2020) Higher-Order Explanations of 
Graph Neural Networks via Relevant Walks
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Explaining Graph Neural Networks

Schnake et al. (2020) Higher-Order Explanations of 
Graph Neural Networks via Relevant Walks

Observations:
  - The input  Λ occurs at every layer of the network.
  - The function f  is piecewise polynomial with  Λ.
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Explaining Graph Neural Networks

Schnake et al. (2020) Higher-Order Explanations of 
Graph Neural Networks via Relevant Walks

Idea:
- First consider input in the last layer, i.e., Λ(l), and attribute on Λ(l).
- Then express contribution of each variable in Λ(l) in terms of the 
input Λ(l-1).
- When we arrive at layer zero, we have identified the contribution of 
all paths between nodes at each layer (can be interpreted as walk into 
the graph).
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Explaining Graph Neural Networks

Schnake et al. (2020) Higher-Order Explanations of 
Graph Neural Networks via Relevant Walks
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Explaining Graph Neural Networks

Can be interpreted as a higher-
order  analysis of the function f.
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Explaining Molecular Polarizability with GNN-LRP

Example:
Paracetamol 
molecule
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Our Review Paper
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Check our Website

Online demos, tutorials, code examples, software, etc.



52/52G. Montavon   DataNinja Summer School, Explainable AI

References

[1] S Bach, A Binder, G Montavon, F Klauschen, KR Müller, W Samek: On Pixel-wise Explanations for 
Non-Linear Classifier Decisions by Layer-wise Relevance Propagation. PLOS ONE, 10(7):e0130140 
(2015)

[2] J Kauffmann, KR Müller, G Montavon. Towards Explaining Anomalies: A Deep Taylor Decomposition of 
One-Class Models, Pattern Recognition, 107198, 2020

[3] T Schnake, O Eberle, J Lederer, S Nakajima, K T. Schütt, KR Müller, G Montavon. Higher-Order 
Explanations of Graph Neural Networks via Relevant Walks, IEEE TPAMI, 2021

[4] S Lapuschkin, S Wäldchen, A Binder, G Montavon, W Samek, KR Müller. Unmasking Clever Hans 
Predictors and Assessing What Machines Really Learn, Nature Communications, 10:1096, 2019

[5] W Samek, G Montavon, S Lapuschkin, C Anders, KR Müller. Explaining Deep Neural Networks and 
Beyond: A Review of Methods and Applications. Proceedings of the IEEE, 109(3):247-278, 2021


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

