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Unsupervised feature selection enables the detection of data
patterns and the description of these patterns with a concise set
of relevant features [8], [10]. For different unsupervised appli-
cations, the curse of dimensionality poses a major challenge.
Information-theoretic, statistical, and correlation measures [2],
[4], [6] are often used to quantify the interaction within a set of
features. However, interpretation of higher-order interactions
is often non-straight-forward and requires the introduction of
human-understandable scores.

In the recent years, a crescent necessity of raising trust
over the results of machine learning models has appeared
and the utility of accessing to individual features’ contribution
scores within the machine learning procedure is high. Feature
importance scores are very common in supervised learning,
however, for unsupervised tasks, the literature is either limited
to higher-order interactions [2], [4], [6] that are not easily
interpretable, or in contrast, to traditional feature scores [8],
[10], not sensitive to higher-order interactions.

Coalitional Game Theory CGT gained success both in
interpretable machine learning as well as in supervised feature
selection methods [3], [5]. To the best of our knowledge, CGT
has not yet being applied to unsupervised feature selection.
We propose to compute feature importance scores based on
the decomposition of the information contained in a discrete
data set by axiomatic Game Theory properties while non
forgetting the need of a non-redundant selection of features. In
particular, we make use of Shapley values [7] to assess to the
feature importance scores. Due to the high flexibility of the
value function, the method does not rely on a fixed notion
of clustering, anomalies, etc. Our scores optimize towards
the features containing the most information on the data set
itself and they are simultaneously penalized to get rid of the
redundancy among features.

METHODS

We consider an N -dimensional data set DB containing D
instances. Each dimension of the data set is the realization
set of a random variable. We refer to the set of variables as
F = {X1, . . . , XN} and to each dimension Xi as ith feature
or variable.

Analyzing the contribution of single features to any possible
subset of features, we can get a ranking of importance scores

Fig. 1. Each subset of features fis is considered to compute Shapley values.
Correlated features are color-coded.

for the features. The higher is the average contribution, i.e.,
the average additional value brought from the feature to any
subset of features (cf. Figure 1), the more convenient is to
keep it in an eventual set of selected features. After integrating
a mechanism of redundancy elimination, we end up with a
feature importance ranking which contains information both
on the importance of the feature w.r.t. its average contribution
and on the redundancy among ranked features.

The Shapley values rely on the definition of a value function
that assigns a real number to each subset of features

v : A ⊆ F 7→ v(A) ∈ R (1)

and satisfies the following properties

1) it assigns zero to the empty set;
2) it is a non-negative function;
3) it is a monotone function over the sets.

The value function for supervised feature selection methods
was defined respectively as the accuracy of the model in Cohen
et al. [3] and as the performance error in Pfannschmidt et
al. [5]. Indeed, in unsupervised feature selection, we have no
access to any label information. We need to choose a value
function reflecting the structure of the data set and we opt for
a measure of the independence of the elements in A ⊆ F .
The initialization of v(A) that we choose to adopt is the total
correlation C(A) of the subset A.

Definition 1. The total correlation C(A) is defined as

C(A) =
∑
X∈A

H(X)−H(A) (2)

where A is a set of variables A ⊆ F and H(A) is the Shannon
entropy of the subset of discrete random variables A.
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Fig. 2. Shapley values for five different samples of features from the Big Five Personality Test data set. In each plot, correlated features are color-coded. On
the top, we see the first three ranked features by the algorithm proposed.

We refer to the quantity

C(A ∪Xi)− C(A) = H(A) +H(Xi)−H(A ∪Xi)

as the marginal contribution of Xi to the subset A. Our feature
importance scores φ(Xi) are defined summing up all marginal
contributions and averaging on the number of possible subsets
A, i.e.,

φ(Xi) =
∑

A⊆F\Xi

kA · [H(A) +H(Xi)−H(A ∪Xi)] (3)

where kA =
(
N
(
N−1
|A|
))−1

. This is the definition of Shapley
value [7] in the case where the value function equals the total
correlation.

Our algorithm is a greedy algorithm that takes as input the
data set DB without the need of any additional parameter. It
works automatically with an included notion of redundancy.
At each step, it selects the highest-ranked feature among the
ones left, where the ranking is based on Shapley values and
correlation with other features. We use as correlation measure
the total correlation: a feature Xj ∈ F is correlated with A ⊆
F \ {Xj} if

H(A) +H(Xj)−H(A ∪Xj) > 0. (4)

From Information Theory we know that H(A) + H(Xj) −
H(A ∪Xj) is a non-negative real number and that it equals
zero if and only if Xj and A are independent. We punish the
features’ scores whenever Equation (4) holds where A is the
set of selected features and Xj the new feature to be ranked.

The algorithm output’s is the uncorrelated feature ranking.
The ranking is aware of correlations as each of the Shapley
values Φ(Xi) is penalized using the correlation measure
H(Xi) + H(A) −H(Xi ∪ A) where A is the set of already
ranked features and Xi is a new feature to be ranked. This
algorithm provides a full ranking of features and can be
prematurely stopped including an upper bound of features we
are willing to rank. We underline the advantage of not having
any additional parameter that requires tuning.

RESULTS

From Game Theory and the definition of Shapley Values [7],
we know that our feature importance score is fairly allocating
the information contained in the data set to each feature w.r.t.

the total correlation. We performed experiments showing that
our algorithm select uncorrelated features both on synthetic as
on real data sets outperforming state-of-the-art methods.

In particular, in the Big Five Personality Test data set, we
run multiple time the algorithm on several different subsets of
the features. Results are represented in Figure 2; The subsets of
correlated features are color-coded while our algorithm aware
of redundancy, is selecting features from uncorrelated subsets
of features.

LIMITATIONS AND FUTURE WORK

Shapley values are computationally expensive as their com-
putation involves an exponential evaluation (in the number of
features in the data set) of the value function. We keep mo-
mentarily the focus on the methodological advantages of our
method in unsupervised feature ranking and show experiments
on small data sets. However, several approximation exists to
compute Shapley values in fairly reasonable time [1], [9].

Moreover, the choice of total correlation as value function
restrict the current approach to discrete and categorical data.
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