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1. The Shapley Value
The notion of a cooperative game, in which players can
form coalitions to accomplish a certain task, is a versatile
concept with countless practical applications. In the con-
text of (supervised) machine learning, individual features
can be seen as players and feature subsets as coalitions —
the task here is to train a model with high predictive
performance [1, 2]. The connection to explainable AI
is established by the question of which proportion of
the collective benefit in predictive performance is to be
assigned to each individual feature.

Formally, a cooperative game is characterized by a pair
(𝑁, 𝜈) containing a set of players 𝑁 = {𝑝1, . . . , 𝑝𝑛}
and a value function 𝜈 : 𝒫(𝑁)→ R, where 𝜈(∅) = 0 by
definition. The players can form coalitions 𝑆 ⊆ 𝑁 and
obtain a combined benefit given by 𝜈(𝑆) which is called
the worth of 𝑆. For the question of how to distribute the
worth 𝜈(𝑁) of the grand coalition 𝑁 to the individual
𝑛 many players, the Shapley value [3] forms a payoff
distribution allocating to each player 𝑝𝑖 the value

𝜑𝑖 =
∑︁

𝑆⊆𝑁∖{𝑝𝑖}

1

𝑛
(︀
𝑛−1
|𝑆|

)︀ · (𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆)) .

The difference in worth 𝑚(𝑖|𝑆) = 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆)
is called 𝑝𝑖’s marginal contribution given 𝑆. The Shapley
value is the most popular solution concept, as it is the
only one satisfying a number of desired requirements for
fair payoff distributions [3].

An inherent drawback of the Shapley value is the huge
computational effort caused by the exponentially (in the
number of players) growing number of marginal con-
tributions to be averaged over. Several approximation
methods have been proposed [4, 5] to tackle this diffi-
culty all of them sharing the same idea of calculating
mean estimates for randomly sampled marginal contri-
butions uniformly for all players. In many applications
the true objective is not to obtain precise Shapley value
estimates for all players, but to identify a certain number
of 𝑘 players with the highest Shapley values.
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2. Shapley Bandits
The Top-k Shapley problem is given by a cooperative
game (𝑁, 𝜈) in which accesses to the value function 𝜈
are costly. Although 𝜈 is known (in the sense that we
can access 𝜈(𝑆) for all 𝑆 ⊆ 𝑁 ), the Shapley values re-
main unknown, since it is practically infeasible for a suf-
ficiently large number of players to compute them. The
players in 𝑁 can be ordered (not necessarily uniquely)
such that 𝜑(1) ≥ . . . ≥ 𝜑(𝑛). For sake of simplicity, we
assume that the there are no ties at the top-𝑘-th position.
Given a number 𝑘 ∈ [𝑛], the learner’s performance is
measured in the fixed budget scenario by its probability
to successfully identify the top-𝑘 players 𝑝(1), . . . , 𝑝(𝑘)
with highest Shapley values, after a given number 𝑇 of
accesses to 𝜈 that the learner is allowed to make.

The problem can be reduced to the problem of multiple
arms identification (MAI), being specified by a set of arms
{𝑎1, . . . , 𝑎𝑛} each arm 𝑎𝑖 of which is endowed with an
unknown reward distribution 𝜁𝑖 having mean reward 𝜇𝑖.
The learning process takes place in successive rounds,
where in each round 𝑡 the learner can pull an arm 𝑎𝑖

of its choice, meaning that it retrieves a random sample
𝑋𝑡

𝑖 ∼ 𝜁𝑖 drawn independently conditioned on the his-
tory of the previous rounds. The arms can be ordered
(not necessarily uniquely) such that 𝜇(1) ≥ . . . ≥ 𝜇(𝑛).
Given a number 𝑘 ∈ [𝑛], the learner’s performance is
measured in the fixed budget scenario of the MAI prob-
lem by its probability to successfully identify the top-𝑘
arms 𝑎(1), . . . , 𝑎(𝑘) with highest mean rewards, after a
given number 𝑇 of pulls the learner is allowed to make.

Given a cooperative game (𝑁, 𝜈), the marginal con-
tribution 𝑚(𝑖|𝑆) of each player 𝑝𝑖 can be viewed as a
discrete random variable 𝑋𝑖 if 𝑆 is drawn randomly from
𝒫(𝑁 ∖ {𝑝𝑖}). Further, by drawing any 𝑆 with probabil-
ity 1/𝑛(𝑛−1

|𝑆| ), 𝑋𝑖 has mean E[𝑋𝑖] = 𝜑𝑖. Thus, by inter-
preting a player 𝑝𝑖 as an arm 𝑎𝑖 within a MAI problem,
where retrieving a sample of the arm’s distribution cor-
responds to drawing a (independent) sample of 𝑋𝑖, we
obtain that the arm’s mean 𝜇𝑖 equals the player’s Shapley
value 𝜑𝑖. Together with the Shapley values, the corre-
sponding arms’ means remain unknown to us. Hence, the
objective of identifying the top-𝑘 players 𝑝(1), . . . , 𝑝(𝑘)
with highest Shapley values is equivalent to the task of
finding the corresponding 𝑘 arms 𝑎(1), . . . , 𝑎(𝑘) having
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highest means. We denote the resulting bandit problem
as Shapley bandits. This general reduction scheme allows
leveraging any algorithm for multiple arms identification
to the Top-k Shapley problem without affecting its inter-
nal mechanisms. Finally, it should be emphasized that
each pull of an arm 𝑎𝑖 involves two accesses to the value
function 𝜈, one for 𝜈(𝑆) and the other for 𝜈(𝑆 ∪ {𝑝𝑖}).

3. Learning Algorithms
UniformRandom Sampling As an illustrative exam-
ple of how the approach can be applied we present the
Uniform Random Sampling algorithm (URS) textually. It
is a modification of the ApproShapley algorithm in [4],
which samples in round-robin fashion a marginal con-
tribution for each player by drawing random coalitions.
For each player 𝑝𝑖 a mean estimate �̂�𝑖 of 𝜑𝑖 is kept by
URS and at termination the 𝑘 players with highest esti-
mates are returned. Utilizing the techniques presented
in [5], we derive performance guarantees for the fixed
budget setting depending on the variances or ranges of
the marginal contributions of each player assuming that
𝑇 is a multiple of 2𝑛.

Theorem 1.
Let 𝑘 ∈ [𝑛], as well as 𝜀 > 0 with 𝜀 ≤ 𝜑𝜋(𝑘) − 𝜑𝜋(𝑘+1).
Then, URS identifies the top-𝑘 players correctly after 𝑇
many accesses to 𝜈 with probability at least

• 1− 8𝑛2𝜎2
/𝜀2𝑇 for 𝜎2 ≥ V[𝑋𝑖] for all 𝑝𝑖 ∈ 𝑁 ;

• 1 − 2𝑛 exp
(︀
−𝜀2𝑇/4𝑛𝑟2

)︀
for 𝑟 being an upper

bound for the range of 𝑋𝑖 for all 𝑝𝑖 ∈ 𝑁 .

Border Uncertainty Sampling Next, we propose a
new algorithm (cf. Algorithm 1) called Border Uncertainty
Sampling (BUS). In similar fashion to Gap-E [6] a mea-
sure of (un-)certainty whether a player 𝑝𝑖 belongs to the
top-𝑘 players or not is at the heart of BUS. However, the
gaps ∆𝑖 in its measure are calculated in a slightly dif-
ferent manner, namely as the absolute distance to the
average of the 𝑘-th and (𝑘 + 1)-th highest mean esti-
mates �̂��̂�(𝑘) and �̂��̂�(𝑘+1). Next, BUS draws a sample for
the player 𝑝𝑖 that minimizes ∆𝑖 · 𝑡𝑖, i.e., the gap times the
number of samples BUS has already drawn for it. The in-
tuition behind this measure of certainty is that for players
with larger gap ∆𝑖 we are more certain to tell whether
it belongs to the top-𝑘 players or not. Likewise, a larger
number 𝑡𝑖 of samples drawn indicates a higher precision
of the estimate �̂�𝑖. BUS outperforms state-of-the art MAI
algorithms Gap-E [6] and SAR [6] on synthetic data. In
comparison, it stands out by not demanding any prob-
lem instance specific parameters like the reward gaps
between arms.

Algorithm 1: Border Uncertainty Sampling
Input: 𝑁 , 𝜈, 𝑘

1 Initialize: �̂�𝑖 ← 0, 𝑡𝑖 ← 1 ∀𝑝𝑖 ∈ 𝑁
2 for 𝑖 = 1, . . . , 𝑛 do
3 �̂�𝑖 = 𝑚(𝑖|𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn with

probability 1/𝑛(𝑛−1
|𝑆| )

4 end
5 for 𝑡 = 𝑛+ 1, . . . do
6 Let �̂� : [𝑛]→ [𝑛] with �̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)

7 �̂�
*
← (�̂��̂�(𝑘)+�̂��̂�(𝑘+1))/2

8 ∆𝑖 ← |�̂�𝑖 − �̂�
*
| ∀𝑝𝑖 ∈ 𝑁

9 𝑖← argmin𝑗∈[𝑛] ∆𝑗 · 𝑡𝑗
10 𝑡𝑖 ← 𝑡𝑖 + 1
11 𝜑𝑖,𝑡𝑖 = 𝑚(𝑖|𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn

with probability 1/𝑛(𝑛−1
|𝑆| )

12 �̂�𝑖 ← ((𝑡𝑖−1)�̂�𝑖+𝜑𝑖,𝑡𝑖)/𝑡𝑖
13 end

Output: 𝑝�̂�(1), . . . , 𝑝�̂�(𝑘) for �̂� : [𝑛]→ [𝑛] with
�̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)
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