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Abstract—Algorithms and solvers often contain many
free parameters that influence their behavior and the
quality of their outputs. Thus, finding a good parameter
configuration for an algorithm can lead to faster perfor-
mances or higher quality solutions, and has developed
into an important field in machine learning. The search
for suiting parameters however is difficult due to large
or even infinite configurations spaces. Moreover, existing
approaches often assume that a training set is available
up front. This does not necessarily hold for certain real
world applications where instances arrive in sequence one
after another and change over time, rendering previously
found configurations outdated. In our work, we tackle this
problem by means of multi-armed bandit methods. These
are used to preselect a promising subset of configurations
on a per-instance basis as they arrive, taking instance
features into account without requiring a training set.

I. INTRODUCTION

Algorithm configuration (AC) is the task of searching
for a parameter configuration from a configuration space
of a given algorithm with the goal of finding a single con-
figuration that optimizes the algorithm’s performance on
a given distribution of inputs. Usually, the performance
is measured either in terms of minimizing the average
runtime until the algorithm returns a solution or maxi-
mizing the quality of the returned solution. Furthermore,
there are two main AC scenarios: offline AC and realtime
AC. While the offline AC scenario configures by means
of the complete instance training set and aims at finding
a configuration that generalizes well across the whole
distribution of problem instances, we focus on realtime
algorithm configuration (RAC), which can be regarded as
an online version of AC. In the RAC scenario, problem
instances arrive sequentially, and the goal is to find the
best configuration in each time step to solve the problem
instance currently under consideration. This setting has
added challenges compared to the offline case, since
it allows for drift in the distribution of the problem
instances over time and does not require a set of training
instances up front. AC has a high relevance in the context
of trustworthy AI, because some algorithms are only

usable, and some problem instances are only solvable,
in an acceptable runtime with an appropriate parameter
configuration. Thus, AC leads to more robust and secure
algorithms and increases trust by providing procedures
that choose parameters in a structured way that make
manual, error prune parameter settings obsolete.

II. PROBLEM FORMULATION

For defining the RAC scenario, let A be the algorithm
for which we want to find an optimal parameterization
with the parameter space Λ, let P be a probability
distribution over the set of problem instances Π, and
πt ∈ Π be the problem instance seen in time step t ∈
N>0. Furthermore, we denote the performance (e.g., the
runtime) of algorithm A with parameter configuration
λ ∈ Λ on instance π ∈ Π as A(λ, π). The goal is to find
an optimal configuration λ∗t in each time step t ∈ N>0:

λ∗t ∈ argminλ∈ΛA(λ, πt).

Fig. 1. Illustration of the configuration process and the interaction
between configurator and target algorithm

III. RAC WITH BANDITS

In practice, we often have a large or even infinite
parameter space Λ. Obviously, in this case, it is not
possible to try out all possible configurations to find
the one that performs best after a new problem instance
πt has arrived. Thus, we need a promising, preselected
subset, from the pool of all possible configurations that
fits within our computational resources. For example, we



can run these configurations in parallel to find the best
one, and therefore a solution to the instance in a timely
manner.

a) Preselection Bandits: In the preselection bandit
scenario (Bengs and Hüllermeier, 2019), we are given
a set of K possible arms, which we denote with their
indices {1, . . . ,K} in the following. In each time step
t ∈ N, the learner now has to preselect a subset
st ⊆ {1, . . . ,K} and observes afterwards the final
choice of the environment from this preselection st. The
preselection bandits can be extended to be contextual
preselection bandits (Mesaoudi-Paul et al., 2020a), in
which the learner observes some context information
before making the preselection.

b) Contextual Preselection under the Plackett-Luce
Model (CPPL): Our goal is to combine principles of
existing RAC approaches such as ReACT (Fitzgerald
et al., 2014) and ReACTR (Fitzgerald et al., 2015) with
preselection bandits. An existing method of contextual
preselection bandits that has been applied to pool-based
RAC is CPPL (Mesaoudi-Paul et al., 2020b). For a
current problem instance πt at time step t ∈ N, the
preselection bandits in CPPL choose, under consider-
ation of the features of the instance, a preselection
st = {λt,1, . . . , λt,S} of a predefined size S from a pool
of candidate configurations. These S configurations are
then executed in parallel until the first one terminates.
Besides returning the found solution for the instance,
the winner information is afterwards used to update
the preselection bandit model and to update the pool
of candidate configurations from which the preselection
bandits must choose the next subset st+1 for a new
instance πt+1. Moreover, pool updates are performed by
first discarding existing candidate configurations based
on estimated bounds and second creating new configu-
rations by applying genetic operators on the top ranked
configurations.

Fig. 2. Concept of the pool-based RAC with preselection bandits.

IV. LIMITATIONS AND OUTLOOK

There are some limitations of the state-of-the-art that
provide possible directions to improve and extend the
approach of CPPL in the context of RAC. For example,
a common problem RAC methods face is the so-called
burn-in phase. Since the instances arrive only step by
step, the realtime algorithm configurator has not seen
many instances in the first iterations and thus its outputs
in the first iterations usually perform poorly. In addition,
the upper confidence bound (Auer and Ortner, 2010)
method by which the preselection bandits estimate the
quality of the K possibilities may not be the best ap-
proach. In fact Thompson sampling (Ortega and Braun,
2014), is often able to outperform upper confidence
bound methods and may also be better suited for our
application. Lastly, the feature representation used to
provide the contextual information to the bandits may
leave room for improvement.
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