Exploring Methods to Apply Gaussian Processes in
Industrial Anomaly Detection

Andreas Besginow

Unversity of Applied Sciences and Arts
Department of Electrical Engineering and Computer Science

Lemgo, Germany
andreas.besginow @th-owl.de

Markus Lange-Hegermann
Unversity of Applied Sciences and Arts
Department of Electrical Engineering and Computer Science
Lemgo, Germany
markus.lange-hegermann @th-owl.de

Index Terms—Gaussian Process, Differential equations,
Streaming methods, Interpretability, Explainable AI, Anomaly
Detection

I. INTRODUCTION

Machine learning describes the field of computers solving
problems without explicit solutions. There are many different
methods in machine learning that can be used, the best known
being Neural Networks which, despite its popularity gives little
to no insight into its inner workings. Contrarily, models like
Gaussian Processes (GPs) [15] provide an innate interpretabil-
ity. A GP can be understood as a probability distribution over
the space of functions f ~ GP(u, k), completely determined
by its mean function u(x) and covariance function k(z,z’)
(also called kernel). In practice, the covariance function is built
from kernel functions that represent different patterns in the
data. For example, the Linear (LIN) kernel describes linear
trends while the Squared Exponential (SE) kernel describes
smoothness of the data via its lengthscale hyperparameter. The
interpretability of GP models mainly comes from knowing the
kernel composition of its covariance function and understand-
ing the corresponding hyperparameters. For instance, if the SE
kernel’s lengthscale is large the expected behaviour is a very
slow change in value. This interpretability can be used in GP-
based anomaly detection [5, 11, 8, 4, 2] to not only find an
anomaly but also explain how it differs from standard system
behaviour. To extend the work on GPs in anomaly detection
we explore implementations of GPs which can be applied to
datastreams (i.e. real-time capability) and the development of
differentiable kernels. To enable the application of GPs in
actual industrial use-cases the speed of GPs has to be increased
significantly, despite current developments in sparse GPs [12,
14, 7, 6]. As for the differentiable kernels, we explore the
cases where underlying physical processes in the form of
differential equations dictate the system behaviour and through
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differentiable kernels in combination with multi-output GPs
we can learn these behaviours.

Overall we aim to develop methods that advance the field
of GPs in multiple different applications by providing new
methods for common forms of data. In the following, we
briefly present our current research.

II. HYBRID, PHYSICAL-DATA DRIVEN GP MODELS

In most production systems there is an underlying physical
process that determines the system’s behaviour, which can
be written as differential equations. We plan to make use of
this by exploring the application of differentiable covariance
functions, based on theorethical works in this area [9, 10],
on data from these production systems. By doing this we
enable the GP models to learn the system’s behaviour and
make predictions about the next system state. But in contrast
to applying the differential equations directly, the innate ability
of GPs to handle noise makes the predictions more stable
and better suited for real world applications, which behave
different from the ideal scenarios required for differential
equations. In later stages of the work we will further explore
systems where the differential equations are not known and
try to find a suitable representation for the system based on
our model.

III. STREAM-CAPABLE GPS

With the increase in online data generation and the con-
struction of smart factories, real-time datastream processing
rises in importance. Applying standard GPs to the problem is
non-trivial since their evaluation cost lies in O(n?) and their
required space is in O(n?) for n datapoints [15]. There are
multiple works on sparse GPs [13, 12, 14, 7, 6], and while they
are successful in accelerating calculations, their approximating
nature can cause them to miss local trends and ignore small
anomalies. On the other hand, window-based GPs [3, 11] can
be unfit to model large-scale trends and their dependency on



the window size combined with a high frequency of incoming
data can cause the calculations to slow down significantly.
Although there has been research on methods to solve these
problems [1], there is currently no way to use previous results
to accelerate a kernel search on new data. In our research,
we want to propose an algorithm that can adjust a kernel
expression based on new information. The adjustment only
happens when a drift in the data is detected. This guarantees
fast processing while also delivering accurate and interpretable
results. Our method in development uses the likelihood of a
kernel expression to verify its continued validity and performs
a window-based adjusting kernel search in the case of a drift.

IV. CONCLUSION

The GAIA project aims to make Gaussian Processes more
applicable for anomaly detection in new areas like datastreams
and production systems with underlying physical processes.
With our current research into kernels derived from differential
equations we will provide more accurate kernel expressions for
many industrial systems, while our developments in stream-
capable GPs will present a fast and interpretable algorithm for
model selection. In future works we will expand and combine
these methods and apply them in other areas of interest.
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