

data Ainja.nrw

Exploring Methods to Apply Gaussian Processes in Industrial Anomaly Detection

Andreas Besginow, Jan David Hüwel, Markus Lange-Hegermann and Christian Beecks

Introduction

- Gaussian Processes (GPs) offer noiseresistant, interpretable ML models [1]
- They can be used for automated anomaly detection in time series data [2]
- They model given data's behaviour using a multitude of kernel functions
- We want to generate kernels from dynamical systems [3]
- We want to expand automatic kernel searches to online data streams

Physical-driven GP Models

Given information on the underlying physical process of a given time series, we construct a matrix kernel to accurately model the systems behaviour.

Streaming Kernel Search

Kernel Search methods that allow for segmentwise processing can not easily be transferred to an online setting [4]. We propose a method that enables fast adaptations of the kernel to changes in the data

Outlook

- We will further improve the presented methods
- We will combine this research with methods for GP based anomaly detection.
- Finally, we will use the inherent interpretability of GPs to extract information on any found anomaly

References

[1] Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z.: Automatic construct tion and natural-language description of nonparametric regression models. In: Twenty-Eighth AAAI Conference on Artificial Intelligence 2014

[2] Hüwel J.D., Besginow A., Lange-Hegermann M., Beecks C.: On Kernel Search Based Gaussian Process Anomaly Detection. In submission

[3] Lange-Hegermann M.: Algorithmic Linearly Constrained Gaussian Processes. In: NeurIPS.2018,pp. 2141–2152.

[4] Berns F., Schmidt K., Bracht I., Beecks C.: 3CS Algorithm for Efficient Gaussian Process Model Retrieval. In: 25th InternationalConference on Pattern Recognition, ICPR 2020

Acknowledgement

This research was supported by the research training group "Dataninja" (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia.

wissen.leben