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I. MOTIVATION 

The aim of the project is the design space exploration of 
embedded hardware platforms for the simulation of Spiking 
Neural Networks (SNNs), which on the one hand, allows 
resource-efficient execution, and, on the other hand, facilitates 
online adaptation and learning. The exploration of the 
neuromorphic accelerators focuses on reconfigurable 
hardware platforms (Field Programmable Gate Arrays 
(FPGAs)).  

The basis is an integrated design process based on a 
backend-independent representation to describe the SNN 
architecture, learning algorithm, neuron and synapse model 
that automatically maps SNNs to parameterizable hardware 
architectures. The developed hardware platforms are coupled 
with event-based sensors (e.g., DVS cameras) as part of a 
prototype structure and tested and evaluated using practical 
application scenarios from two domain experts from vision-
based quality control and event detection. 

II. PROBLEM STATEMENT 

Many application areas, for example, computer vision 
tasks in production, require resource-efficient execution. 
Artificial Intelligence solutions that adapt to online and 
changing conditions in such methods are promising but often 
involve large models and costly computations. Real-time 
processing is necessary for many applications that cannot 
handle latency in making important decisions. Also, the 
applications could be using private data that could be sensitive 
if sent to the cloud. By performing all computation with local 
data in the edge and thus following a privacy by design 
methodology, this project contributes to the field of 
trustworthy AI. 

III. METHOD 

The project uses current embedded hardware architecture 
for testing SNN specific online learning methods directly on 
hardware. As an example, this system will be employed for 
ultra-high-speed computer vision and event detection tasks. 
Implementing online learning methods into resource-efficient 
hardware allows embedding such tasks directly on sensor 
hardware, reducing high-bandwidth communications, allows 
faster processing, and ensures data privacy. Firstly, 
concerning hardware architecture, this will cover 
reconfigurable hardware platforms (FPGA’s). Secondly, 
various neuron and synapse models – and configurations of 
these models – will be evaluated, for example, variations of 
spike-timing-dependent plasticity (STDP) [1]. The hardware 
architecture will finally be coupled with event-based sensors 
(e.g., DVS cameras) to evaluate the solutions based on 
practical application scenarios. 

The research carries out a backend-independent model 
exploration (e.g., described by ONNX [2], SpineML [3] or 

NineML [4]) of SNN network architecture, learning algorithm 
and neuron/synapse model, which determines the first 
parameters for the subsequent exploration of the hardware 
platform. This first evaluation is intended to determine the 
complexity of the various neuron/synapse models to decide 
which model properties (e.g., refractory times, adaptive 
thresholds, different variants of STDP) are required and 
optional for the hardware implementation. STDP forms a 
component of the adaptive platform that can adapt to changing 
data (data or concept drift). Another building block consists of 
the optimization of the network architecture by reducing the 
network during inactivity (analogous to the “nocturnal 
reduction” when sleeping), i.e., removing the most 
insignificant synapses and creating new connections 
(structural plasticity [5]).  The abstract model is mapped to the 
target architecture by a model compiler. The network structure 
is optimized independently of the architecture in preparation, 
i.e., clusters of neurons with high connectivity are physically 
placed close to one another to find the Pareto optimum trade-
off between communication costs and calculation costs. The 
synaptic delay of the spiking neurons can be used to efficiently 
implement the delivery of spikes to more distant neurons in 
hardware. Both the clustering of neurons with high 
connectivity and the use of varying delays can be integrated 
into the learning process (see, e.g., Spike Timing Dependent 
Delay Adaptation [6] or SpikeProp, a form of spike-based 
backpropagation [7]). Alternatively, delays are specified by 
the hardware platform and are integrated into the learning 
algorithm [9]. The complete design flow for implementing the 
neuromorphic hardware is depicted in Figure 1. 

 

Figure 1: Design Flow for Implementing Neuromorphic 
Hardware 

IV. BINARY ASSOCIATIVE MEMORY 

As the research focuses on exploring hardware 
architectures, memory plays a vital in hardware designing. For 
the first assessment of the influence of neuron/synapse model 
complexity on application performance, we make use of a 
simplistic spiking binary associative memory model. 
Associative memory is a mapping memory that maps input to 
output patterns. The binary associative memory was 
developed by G. Palm [8] in 1980, and the spiking variant is 
inspired from this. Binary associative memory consists of a 
single layer of neurons, in which every neuron represents one 
output element. The weights of the connection matrix have to 
be trained according to the input and output patterns. To get a 



reasonable capacity, we must have sparse patterns in the input 
and the output. 

The spiking network architecture is realized using a 
Leaky-Integrate and Fire (LIF) neuron model. In the input 
vector, ones/set bits are encoded as a single spike. For 
decoding the output, spikes in a given time window are 
interpreted as a set bit in the respective output pattern. When 
the pre-trained storage matrix Mxy evaluates to 1, a synaptic 
connection is established between input signal ‘x’ and neuron 
‘y’. All the inputs connected with the weights are summed up, 
and are compared with the threshold; if the values exceed the 
threshold, the neuron fires. If the neuron does not fire it relaxes 
back to the resting potential. In contrast to the classical 
associative memory, the spiking variant has several neuron 
parameters that need to be optimized for a good performance. 
In this case, and to better understand the underlying principles, 
this is realized by multi-dimensional parameter sweeps. 

V. RESULTS 

    For implementing the SNN model architecture, the Brian2 
software simulator is used. The input and output patterns are 
generated in a way to be sparse to attain reasonable capacity. 
We investigated how the storage behaves with varying 
samples and other essential model parameters like threshold 
and weights. The essential model parameters are determined 
by performing multiple experiments. Default values for all 
plots can be found in Table 1. Figure 2 shows the behavior of 
the storage with a varying number of samples. This 
demonstrates, that the performance of the spiking variant 
relative to the classical realization and the size of the storage 
capacity is proportional to the number of samples. 

Table 1: Default Parameters 

Synaptic Weight (nA) 1 
Threshold (mV) 4 
Input Neurons 300 

Output Neurons 600 
Ones in Input 4 

Ones in Output 5 
 

 

Figure 2: Number of Samples vs Information 

The storage performance is estimated at varying thresholds 
and weights with the inputs and outputs specified in Table 1. 
As an example, Figures 3 depicts the model’s performance at 
varying weight values. On one hand, small weights lead to 
information loss (false negatives) in the output. On the other 
hand, increased weights will result in a large number of false 
positives. For optimal performance, the weight has to be 
chosen such that both values are at a minimum. 

 

Figure 3: Weight vs Information 

VI. CONCLUSION 

To summarize, a simple binary associative memory is 
realized using SNNs. The essential parameters are 
determined. For future work, the model will be implemented 
on neuromorphic hardware (FPGAs) for drawing associations 
in real-world edge AI applications. And the results will be 
compared with the existing neuromorphic hardware 
architectures.  
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