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I. INTRODUCTION

Electromyography (EMG) means to measure the electrical
activity of muscles, which gives insight into their current state
and condition. In medicine, EMG is established as a tool to
diagnose various disorders. In the area of machine learning,
EMG is e.g. also used to control actuated hand prostheses, by
recognizing intended hand gestures [1]. In contrast to such a
classification task, the prediction of continuous movement is
less researched. Methods that have been proposed to predict
continuous movement via EMG use e.g. a combination of
convolutional and recurrent layers [2], [3], often in deep
architectures, or simple statistical features [4].

II. PROPOSED MODEL

This work investigates the prediction of elbow movement. A
dataset consisting of elbow movements recorded from 17 per-
sons serves as a basis for experiments. During the movements,
EMG measurements were conducted at 4 sensors on the upper
arm, two on the biceps and two on the triceps. Additionally,
the elbow angle was measured. The test subjects performed
slow and fast movements, in three different arm poses (upper
arm pointing down, pointing up, and held horizontally). The
goal is to create a model that predicts the future trajectory
of the elbow angle, online, using this dataset for training and
verification. The model is desired to be interpretable and to
allow insight into how each muscle influences the movement.
It must be computationally inexpensive, so that it can run
in real-time even on small hardware. Instead of a one-step
prediction, the model should give the prediction as a Taylor
polynomial of low order. This has the advantage that the
polynomial can be evaluated at any time point, it can even
give predictions hundreds of milliseconds in the future, albeit
then with less accuracy. For example, a second order Taylor
polynomial is described by:
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Where f is the elbow angle, a is the current time, and x is any
time of interest in the future. f(a) is the (known) current angle,
and f’(a) and f”(a), the angular velocity and acceleration,
have to be estimated by the model.
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The proposed network architecture (fig. 1) has two stages:
The first stage reconstructs the level of activity of the muscle
or muscle parts from the raw EMG measurements, individually
for each sensor. This is done with a convolution over the last
256 EMG measurements. The output function is a sigmoid,
so that the activity is between O and 1. The second stage
is a fully-connected layer which combines the four muscle
activities with a gravity component. The gravity component
reflects how strong and in which direction gravity acts on the
forearm and hand, with regard to the elbow.

The performance of this proposed model is shown in fig. 2.
It is visible that the general shape of the angular velocity is
well predicted, but the magnitude, especially peaks, are often
underestimated. Furthermore, the prediction contains some
noise, likely carried over from the noisy EMG signals.

III. FUTURE WORK

The proposed model will be refined to give better predic-
tions and then be compared to models introduced in other
papers for similars tasks, e.g. [2], [3]. One question is whether
the convolution weights should be the same for all sensors, or
whether the weights should be learned individually. The latter
could be appropriate because the different muscle parts might
produce different electrical signals, which are influenced by
layers of tissue and skin, but this could also reduce the ability
of the model to generalize.

One major aspect to investigate is how the trained model can
be transferred to another person. The two stage architecture
may facilitate this.
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Fig. 1. The two stage architecture of the proposed model. The upper part shows the convolutional layer, activated by a sigmoid function. The lower part
combines the four inputs in a fully-connected (dense) layer, together with a gravity component (not shown).
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Fig. 2. Current performance of the network in predicting the angular velocity of the elbow.



