
Shedding Light into the Black Box of
Reinforcement Learning

Raphael Engelhardt∗, Moritz Lange†, Laurenz Wiskott† and Wolfgang Konen∗
∗Cologne Institute of Computer Science, TH Köln
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I. INTRODUCTION

Reinforcement learning (RL) and deep learning (DL) have
achieved remarkable, often super-human performance and
dominate in many areas of machine learning. While machine
learning algorithms show ever-improving results, even outper-
forming humans, they fall short when it comes to transparent
decision making. Understanding the “reasoning” behind the
decision of an RL agent might be considered optional in the
environment of a game, but it becomes critical when RL agents
act in the real world, e.g. on health- or safety-related tasks,
where possibly drastic consequences and questions regarding
liabilities might occur.
In this paper we present a new approach to shed some light
into the black box of the decision making process of a trained
RL agent by translating its behavior into intelligible rules.
Our approach is based on a rather simple idea:

1) First a black box RL agent is trained on a specific
environment until satisfying returns are achieved with
acceptable consistency.

2) In the next step the trained agent (which we call oracle)
is evaluated for a number of episodes while at each
timestep the observation and the action taken are logged.
(The return of the respective episode is appended to each
entry afterwards, allowing for the optional filtering of
episodes of certain quality.)

3) In the third step a decision tree (DT) is induced from
the samples formed in the previous step.

The resulting tree is evaluated by applying it as a decision
maker in a number of evaluation episodes and comparing
average and standard deviation of the episodes’ returns with
the ones achieved by the oracle.
Using this approach we aim to answer the question of whether
a set of simple and intelligible rules can be deduced from an
RL oracle that approximate the oracle’s performance. In par-
ticular we investigate practical aspects such as the suitability
of different types of decision trees or the amount of samples
needed for satisfactory results.

II. METHODS

We use different algorithms in our approach:
• As RL agents we use the DQN and PPO algorithms as

implemented by Stable Baselines3 [1] since they present
state-of-the-art algorithms in RL and DL

• Some simple problems can be solved by a fixed de-
terministic policy (handcrafted rules). These handcrafted
rules (HC) may be used as a surrogate for an oracle and
conveniently also serve as a benchmark for our core idea:
If the extracted rules are close to the handcrafted ones,
we know that our rule-extraction process works well.

• For the induction of decision trees we rely on CART [2],
as implemented in Scikit-learn [3], and oblique decision
trees (ODT), as described and implemented in [4].

We test our approach on three different environments imple-
menting classic control problems with discrete action spaces:

• In MountainCar-v0 (MC), provided by OpenAI
Gym [5], a car initially positioned in a valley is supposed
to reach a flag positioned on top of the mountain to the
right as fast as possible. As the force of the car’s motor
is insufficient to simply drive up the slope, it needs to
build up momentum by swinging back and forth in the
valley.

• The CartPole-v0 (CP) environment [5] consists of a
pole balancing upright on top of a cart. By moving left
or right, the cart should balance the pole in the upright
position for as long as possible, while maintaining the
limits of the one-dimensional track the cart moves on.

• CartPole Swing-Up (CPSU) [6] is conceptually similar to
CartPole, with the additional difficulty that the pole starts
in a downward position and has to be swung up by back-
and-forth movements of the cart before being balanced
upright.

III. RESULTS

All three problems can be successfully solved with suitable RL
oracles. On problems MC and CP, the trees from our approach
reach rewards similar to the oracles’ rewards (see Table I).
This is an interesting result, because the trees translate the RL
policy into a better understandable set of rules which are quite
simple. We use a maximum tree depth of 4 for all MC and
CP experiments to limit the complexity of the induced rules.
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Fig. 1. Trajectories of the MountainCar DQN agent in the observation space
tagged with the agent’s actions (0: left, 1: none, 2: right)
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Fig. 2. Trajectories of the MountainCar CART tree agent induced from DQN

It should be noted that these problems, although not complex,
are far from being trivial to learn: It was for example not
possible to solve the MC problem with PPO. Fig. 1 and 2 show
trajectory pictures for the MountainCar problem. Although
CART can only induce vertical or horizontal boundaries in
the state space, it can approximate the oracle’s trajectories
and episode returns very well.
The trees resulting from our approach have better average
rewards than the rule sets of the programmatic approach
proposed by Verma et al. [7] (lines [Verma] in Table I).
Moreover, we could not reproduce their results: When we
applied their precise rules given in [7] to the environments,
we got the results in lines [Verma]-rule in Table I, which are
lower than [Verma].
The CPSU problem currently poses a challenge to our tree-
based approach. Although we are able to learn a high-quality
oracle with PPO, it is not possible to induce a simple tree
from it: If we constrain the tree to maximum depth 4, the
corresponding agent is not successful in bringing the pole in an
upright position. Only with depth 10 can we reach an upright
balanced pole and an average reward similar to the oracle
(Table I). However, such a tree is too big to be interpretable.

TABLE I
RESULTS ON VARIOUS ENVIRONMENTS. CART [DQN] IS A DEPTH-4 TREE

AGENT WITH ALGORITHM CART BASED ON SAMPLES FROM ORACLE
DQN. CART10 IS A DEPTH-10 TREE. 〈R〉 IS THE AVERAGE REWARD FROM

100 CONSECUTIVE EPISODES. SHOWN IS MEAN ±σ(MEAN) FROM 10
RUNS. 〈R〉(optimal) : OPTIMAL REWARD. AGENTS WITH REWARDS

≥ 〈R〉(solved) ARE SAID TO solve AN ENVIRONMENT.

Environment Agent 〈R〉 〈R〉(optimal)

[〈R〉(solved)]

MountainCar

Oracle DQN −101.9± 3.4
≈ −90Oracle HC −108.3± 4.4

CART [DQN] −103.5± 2.8
ODT [DQN] −105.0± 4.2

[−110]CART [HC] −107.8± 4.4
[Verma] −143.9, −108.1
[Verma]-rule −162.6± 3.8

CartPole

Oracle PPO 200.0± 0.0
200Oracle HC 200.0± 0.0

CART [PPO] 200.0± 0.0
ODT [PPO] 199.4± 2.6

[195]
CART [HC] 200.0± 0.0
[Verma] 143.2, 183.2
[Verma]-rule 106.0± 16.9

CPSU
Oracle PPO 895.0± 16.0

1000CART [PPO] 118.1± 25.3
CART10 [PPO] 655.2± 78.6 [800]

IV. CONCLUSION & OUTLOOK

With our current work, we propose a novel method of obtain-
ing intelligible rules by training decision trees based on the
actions made by well-performing oracles. Our results show
how the system is able to reliably extract a given set of rules
(over repeated runs with different seeds) and how it can induce
new rules from the behavior of well-trained deep RL agents.
In the test cases MC and CP the induced decision trees yield
satisfactory results with very limited complexity, while for the
CPSU problem a small and explaining set of rules from RL
oracles remains to be found.
We note that the environments used so far exhibit discrete ac-
tion spaces. The decision trees therefore solve a classification
problem. The next logical step will be to extend our approach
to operate on continuous action spaces by using regression
trees.
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