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Motivation

Reinforcement learning (RL) and deep learning (DL) have achieved

remarkable, often super-human performance and dominate in many

areas of machine learning. While algorithms show ever-improving

results, they fall short when it comes to transparent decision making.

Our goal is to shed some light into the black box of the decision

making process of a trained RL agent by translating its behavior into

intelligible rules.

Approach

1. First a black box RL agent is trained on a specific environment

until satisfying returns are achieved with acceptable

consistency.

2. In the next step the trained agent (which we call oracle) is

evaluated for a number of episodes while at each timestep the

observation and the action taken are logged.

3. In the third step a decision tree (DT) is induced from the

samples collected in the previous step.

Using this approach we aim to answer the question of whether

a set of simple and intelligible rules can be deduced from an RL

oracle that approximates the oracle’s performance.

Methods

Oracles are obtained by
training black box RL agents using DQN, PPO and TD3 algorithms, as

implemented by Stable Baselines3 [1]

developing simple handcrafted policies. These are used as a surrogate for a

black box agent and they serve as a benchmark for the approach: we can

compare extracted rules to the handcrafted ones (see Figure 2)

For the induction of decision trees: CART [2], as implemented in

Scikit-learn [3] and oblique decision trees (ODT), as described

and implemented in [4]

Approach is tested on four different environments (Figure 1)

implementing classic control problems with discrete and

continuous action spaces: MountainCar-v0 (MC),
MountainCarContinuous-v0 (MCCont), CartPole-v0 (CP),
provided by OpenAI Gym [5] and CartPole Swing-Up (CPSU),

adapted from [6] to offer a discrete action space.

(a) MountainCar (b) CartPole (c) CartPole Swing-Up

Figure 1. Renderings of the environments the approach has been tested on

(a) In MC and MCCont a car initially positioned in a valley is supposed to reach
a flag positioned on top of the mountain to the right. As the force of the

car’s motor is insufficient to simply drive up the slope, it needs to build up

momentum by swinging back and forth in the valley.

(b) The CP environment consists of a pole balancing upright on top of a cart.
By moving left or right, the cart should balance the pole in the upright

position for as long as possible, while maintaining the limits of the

one-dimensional track it moves on.

(c) CPSU is conceptually similar to CP, with the additional difficulty that the
pole starts in a downward position and has to be swung up by

back-and-forth movements of the cart before being balanced upright.

Results

All four problems can be solved by suitable RL oracles.

On problems MC, MCCont and CP, the induced trees reach

returns similar to the oracles (see Table 1).

CPSU currently poses a challenge:
When constraining the tree to a maximum depth 4, the corresponding
agent is not successful in bringing the pole in an upright position.

Only with depth 10 the average return is somewhat similar to oracle’s (Table
1). However, such a tree is too big to be interpretable.
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(b) Decision tree induced by CART

Figure 2. Comparison between the oracle’s policy (a) and the decision tree as

extracted from samples by the CART algorithm (b). Even if the trees are

structured differently, the underlying rules are the same under the given

precision.

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4
Car position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ca
r v

el
oc

ity

Decision
0.8
0.4

0.0
0.4
0.8

(a) Trajectory of the TD3 oracle

(R = 93.85 ± 0.25)
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(b) Trajectory of the induced DT of

depth 3 (R = 94.01 ± 0.27)

Figure 3. Trajectories of a TD3 black box oracle (a) and of the DT extracted from

samples generated by the oracle (b) for MCCont. Both agents exhibit a very

similar return during the 100 evaluation episodes.
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Figure 4. Visualization of samples collected during the evaluation of a TD3 agent

on MCCont and the decision surface of the depth 3 DT induced by the CART
algorithm

Table 1. Results on various environments. CART [DQN] is a depth-4 tree agent

with algorithm CART based on samples from oracle DQN. CART10 is a
depth-10 tree. 〈R〉 is the average reward from 100 consecutive episodes.
Shown is mean ±σ(mean) from 10 runs. 〈R〉(optimal): optimal reward. Agents
with rewards ≥ 〈R〉(solved) are said to solve an environment.

Environment Agent 〈R〉 〈R〉(optimal)

[〈R〉(solved)]

MountainCar

Oracle DQN −101.9 ± 3.4
≈ −90Oracle HC −108.3 ± 4.4

CART [DQN] −103.5 ± 2.8
ODT [DQN] −105.0 ± 4.2

[−110]CART [HC] −107.8 ± 4.4
[Verma] −143.9, −108.1
[Verma]-rule −162.6 ± 3.8

CartPole

Oracle PPO 200.0 ± 0.0
200Oracle HC 200.0 ± 0.0

CART [PPO] 200.0 ± 0.0
ODT [PPO] 199.4 ± 2.6

[195]CART [HC] 200.0 ± 0.0
[Verma] 143.2, 183.2
[Verma]-rule 106.0 ± 16.9

CPSU

Oracle PPO 895.0 ± 16.0 1000
CART [PPO] 118.1 ± 25.3
CART10 [PPO] 655.2 ± 78.6 [800]

MountainCarCont.

Oracle TD3 93.9 ± 0.1 100
Oracle HC 97.1 ± 0.2
CART [TD3] 94.0 ± 0.1 [90]
CART [HC] 97.2 ± 0.2

Summary

All considered environments can be solved by RL agents

For MC, MCCont and CP the approach works

The approach produces better results than the ones reported

by [7] (cf. table 1 rows [Verma])

CPSU is a challenge: better returns only with deeper trees

Environment Black box RL agent Interpretable DT

MountainCar (disc.) 3 3

CartPole 3 3

CartPole Swing-Up 3 7

MountainCar (cont.) 3 3
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